We demonstrate that scattering of particles strongly interacting in three
dimensions (3D) can be suppressed at low energies in a quasi-one-dimensional
(1D) confinement. The underlying mechanism is the interference of the s- and
p-wave scattering contributions with large s- and p-wave 3D scattering lengths
being a necessary prerequisite. This low-dimensional quantum scattering effect
might be useful in "interacting" quasi-1D ultracold atomic gases, guided atom
interferometry, and impurity scattering in strongly confined quantum wire-based
electronic devices.Comment: 3 figs, Phys. Rev. Lett. (early November issue