11,326 research outputs found

    Properties of carbon fibers with various coatings

    Get PDF
    It is shown that all high modulus carbon fibers are durable with respect to thermal oxidation in air. Among the more widely used and economical materials with low modulus, Celion displays particularly good oxidative durability at high temperatures. This contrast to other materials is due to the low content of Natrium and Kalium in Celion carbon fibers. It is also noted that improved characteristics are attained in Celion carbon fiber/polyimide systems when fibers are used with high temperature resistant polyimide coatings

    [OII] emitters in the GOODS field at z~1.85: a homogeneous measure of evolving star formation

    Full text link
    We present the results of a deep, near-infrared, narrow band imaging survey at a central wavelength of 1.062 microns (FWHM=0.01 microns) in the GOODS-South field using the ESO VLT instrument, HAWK-I. The data are used to carry out the highest redshift search for [OII]3727 emission line galaxies to date. The images reach an emission line flux limit (5 sigma) of 1.5 x 10^-17 erg cm^-2 s^-1, additionally making the survey the deepest of its kind at high redshift. In this paper we identify a sample of [OII]3727 emission line objects at redshift z~1.85 in a co-moving volume of ~4100 Mpc^3. Objects are selected using an observed equivalent width (EW_obs) threshold of EW_obs = 50 angstroms. The sample is used to derive the space density and constrain the luminosity function of [OII] emitters at z=1.85. We find that the space density of objects with observed [OII] luminosities in the range log(L_[OII]) > 41.74 erg s^-1 is log(rho)=-2.45+/-0.14 Mpc^-3, a factor of 2 greater than the observed space density of [OII] emitters reported at z~1.4. After accounting for completeness and assuming an internal extinction correction of A_Halpha=1 mag (equivalent to A_[OII]=1.87), we report a star formation rate density of rho* ~0.38+/-0.06 Msun yr^-1 Mpc^-3. We independently derive the dust extinction of the sample using 24 micron fluxes and find a mean extinction of A_[OII]=0.98+/-0.11 magnitudes (A_Halpha=0.52). This is significantly lower than the A_Halpha=1 (A[OII]=1.86) mag value widely used in the literature. Finally we incorporate this improved extinction correction into the star formation rate density measurement and report rho*~0.24+/-0.06 Msun yr^-1 Mpc^-3.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Cysteine protecting groups: applications in peptide and protein science

    Get PDF
    Protecting group chemistry for the cysteine thiol group has enabled a vast array of peptide and protein chemistry over the last several decades. Increasingly sophisticated strategies for the protection, and subsequent deprotection, of cysteine have been developed, facilitating synthesis of complex disulfide-rich peptides, semisynthesis of proteins, and peptide/protein labelling in vitro and in vivo. In this review, we analyse and discuss the 60+ individual protecting groups reported for cysteine, highlighting their applications in peptide synthesis and protein science

    CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly

    Get PDF
    Human centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive alphoid DNA sequences. By inducing rapid, complete degradation of endogenous CENP-A, we now demonstrate that once the first steps of centromere assembly have been completed in G1/S, continued CENP-A binding is not required for maintaining kinetochore attachment to centromeres or for centromere function in the next mitosis. Degradation of CENP-A prior to kinetochore assembly is found to block deposition of CENP-C and CENP-N, but not CENP-T, thereby producing defective kinetochores and failure of chromosome segregation. Without the continuing presence of CENP-A, CENP-B binding to alphoid DNA sequences becomes essential to preserve anchoring of CENP-C and the kinetochore to each centromere. Thus, there is a reciprocal interdependency of CENP-A chromatin and the underlying repetitive centromere DNA sequences bound by CENP-B in the maintenance of human chromosome segregation

    Facilitators and barriers to the implementation of a Mobile Health Wallet for pregnancy-related health care: A qualitative study of stakeholders’ perceptions in Madagascar

    Get PDF
    Financial barriers are a major obstacle to accessing maternal health care services in low-resource settings. In Madagascar, less than half of live births are attended by skilled health staff. Although mobile money-based savings and payment systems are often used to pay for a variety of services, including health care, data on the implications of a dedicated mobile money wallet restricted to health-related spending during pregnancy–a mobile health wallet (MHW)–are not well understood. In cooperation with the Madagascan Ministry of Health, this study aims to elicit the perceptions, experiences, and recommendations of key stakeholders in relation to a MHW amid a pilot study in 31 state-funded health care facilities. We conducted a two-stage qualitative study using semi-structured in-depth interviews with stakeholders (N = 21) representing the following groups: community representatives, health care providers, health officials and representatives from phone provider companies. Interviews were conducted in Atsimondrano and Renivohitra districts, between November and December of 2017. Data was coded thematically using inductive and deductive approaches, and found to align with a social ecological model. Key facilitators for successful implementation of the MHW, include (i) close collaboration with existing communal structures and (ii) creation of an incentive scheme to reward pregnant women to save. Key barriers to the application of the MHW in the study zone include (i) disruption of informal benefits for health care providers related to the current cash-based payment system, (ii) low mobile phone ownership, (iii) illiteracy among the target population, and (iv) failure of the MHW to overcome essential access barriers towards institutional health care services such as fear of unpredictable expenses. The MHW was perceived as a potential solution to reduce disparities in access to maternal health care. To ensure success of the MHW, direct demand-side and provider-side financial incentives merit consideration

    Simple Metals at High Pressure

    Full text link
    In this lecture we review high-pressure phase transition sequences exhibited by simple elements, looking at the examples of the main group I, II, IV, V, and VI elements. General trends are established by analyzing the changes in coordination number on compression. Experimentally found phase transitions and crystal structures are discussed with a brief description of the present theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice course on High-Pressure Crystallography in June 2009, Sicily, Ital

    Effects of disorder in location and size of fence barriers on molecular motion in cell membranes

    Full text link
    The effect of disorder in the energetic heights and in the physical locations of fence barriers encountered by transmembrane molecules such as proteins and lipids in their motion in cell membranes is studied theoretically. The investigation takes as its starting point a recent analysis of a periodic system with constant distances between barriers and constant values of barrier heights, and employs effective medium theory to treat the disorder. The calculations make possible, in principle, the extraction of confinement parameters such as mean compartment sizes and mean intercompartmental transition rates from experimentally reported published observations. The analysis should be helpful both as an unusual application of effective medium theory and as an investigation of observed molecular movements in cell membranes.Comment: 9 pages, 5 figure

    A general scheme for modeling gamma-ray burst prompt emission

    Full text link
    We describe a general method for modeling gamma-ray burst prompt emission. We find that for the burst to be produced via the synchrotron process unphysical conditions are required -- the distance of the source from the center of the explosion (RγR_\gamma) must be larger than ∼1017\sim 10^{17}cm and the source Lorentz factor \gta 10^3; for such a high Lorentz factor the deceleration radius (RdR_d) is less than RγR_\gamma even if the number density of particles in the surrounding medium is as small as ∼0.1\sim 0.1 cm−3^{-3}. The result, Rγ>RdR_\gamma > R_d, is in contradiction with the early x-ray and optical afterglow data. The synchrotron-self-Compton (SSC) process fares much better. There is a large solution space for a typical GRB prompt emission to be produced via the SSC process. The prompt optical emission accompanying the burst is found to be very bright (\lta 14 mag; for z∼2z\sim2) in the SSC model, which exceeds the observed flux (or upper limit) for most GRBs. Continuous acceleration of electrons can significantly reduce the optical flux and bring it down to the observed limits. (Abridged)Comment: Published in MNRAS Jan 2008, 56 page
    • …
    corecore