1,097 research outputs found

    BrainPainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes

    Get PDF
    We present BrainPainter, a software that automatically generates images of highlighted brain structures given a list of numbers corresponding to the output colours of each region. Compared to existing visualisation software (i.e. Freesurfer, SPM, 3D Slicer), BrainPainter has three key advantages: (1) it does not require the input data to be in a specialised format, allowing BrainPainter to be used in combination with any neuroimaging analysis tools, (2) it can visualise both cortical and subcortical structures and (3) it can be used to generate movies showing dynamic processes, e.g. propagation of pathology on the brain. We highlight three use cases where BrainPainter was used in existing neuroimaging studies: (1) visualisation of the degree of atrophy through interpolation along a user-defined gradient of colours, (2) visualisation of the progression of pathology in Alzheimer's disease as well as (3) visualisation of pathology in subcortical regions in Huntington's disease. Moreover, through the design of BrainPainter we demonstrate the possibility of using a powerful 3D computer graphics engine such as Blender to generate brain visualisations for the neuroscience community. Blender's capabilities, e.g. particle simulations, motion graphics, UV unwrapping, raster graphics editing, raytracing and illumination effects, open a wealth of possibilities for brain visualisation not available in current neuroimaging software. BrainPainter is customisable, easy to use, and can run straight from the web browser: https://brainpainter.csail.mit.edu , as well as from source-code packaged in a docker container: https://github.com/mrazvan22/brain-coloring . It can be used to visualise biomarker data from any brain imaging modality, or simply to highlight a particular brain structure for e.g. anatomy courses.Comment: Accepted at the MICCAI Multimodal Brain Imaging Analysis (MBIA) workshop, 201

    High-level automatic pipelining for sequential circuits

    Get PDF

    Bayesian Image Reconstruction using Deep Generative Models

    Get PDF
    Machine learning models are commonly trained end-to-end and in a supervised setting, using paired (input, output) data. Examples include recent super-resolution methods that train on pairs of (low-resolution, high-resolution) images. However, these end-to-end approaches require re-training every time there is a distribution shift in the inputs (e.g., night images vs daylight) or relevant latent variables (e.g., camera blur or hand motion). In this work, we leverage state-of-the-art (SOTA) generative models (here StyleGAN2) for building powerful image priors, which enable application of Bayes' theorem for many downstream reconstruction tasks. Our method, Bayesian Reconstruction through Generative Models (BRGM), uses a single pre-trained generator model to solve different image restoration tasks, i.e., super-resolution and in-painting, by combining it with different forward corruption models. We keep the weights of the generator model fixed, and reconstruct the image by estimating the Bayesian maximum a-posteriori (MAP) estimate over the input latent vector that generated the reconstructed image. We further use variational inference to approximate the posterior distribution over the latent vectors, from which we sample multiple solutions. We demonstrate BRGM on three large and diverse datasets: (i) 60,000 images from the Flick Faces High Quality dataset (ii) 240,000 chest X-rays from MIMIC III and (iii) a combined collection of 5 brain MRI datasets with 7,329 scans. Across all three datasets and without any dataset-specific hyperparameter tuning, our simple approach yields performance competitive with current task-specific state-of-the-art methods on super-resolution and in-painting, while being more generalisable and without requiring any training. Our source code and pre-trained models are available online: https://razvanmarinescu.github.io/brgm/.Comment: 27 pages, 17 figures, 5 table

    Divergent perspectives about social problems in Romania. A longitudinal literature review

    Get PDF
    This research primarily focuses on identifying the main trends documented in the scientific analysis of the way in which the Romanian media presented the internal social aspect

    Modelling the Neuroanatomical Progression of Alzheimer's Disease and Posterior Cortical Atrophy

    Get PDF
    In order to find effective treatments for Alzheimer's disease (AD), we need to identify subjects at risk of AD as early as possible. To this end, recently developed disease progression models can be used to perform early diagnosis, as well as predict the subjects' disease stages and future evolution. However, these models have not yet been applied to rare neurodegenerative diseases, are not suitable to understand the complex dynamics of biomarkers, work only on large multimodal datasets, and their predictive performance has not been objectively validated. In this work I developed novel models of disease progression and applied them to estimate the progression of Alzheimer's disease and Posterior Cortical atrophy, a rare neurodegenerative syndrome causing visual deficits. My first contribution is a study on the progression of Posterior Cortical Atrophy, using models already developed: the Event-based Model (EBM) and the Differential Equation Model (DEM). My second contribution is the development of DIVE, a novel spatio-temporal model of disease progression that estimates fine-grained spatial patterns of pathology, potentially enabling us to understand complex disease mechanisms relating to pathology propagation along brain networks. My third contribution is the development of Disease Knowledge Transfer (DKT), a novel disease progression model that estimates the multimodal progression of rare neurodegenerative diseases from limited, unimodal datasets, by transferring information from larger, multimodal datasets of typical neurodegenerative diseases. My fourth contribution is the development of novel extensions for the EBM and the DEM, and the development of novel measures for performance evaluation of such models. My last contribution is the organization of the TADPOLE challenge, a competition which aims to identify algorithms and features that best predict the evolution of AD.Comment: PhD thesis; Defended in Jan 2019 at University College Londo

    Production Planning for Integrated Primary and Secondary Lumber Manufacturing

    Get PDF
    This paper describes two linear programming models that were developed for production planning in value-added lumber manufacturing facilities. One model is designed for nonintegrated value-added facilities; the other is designed for value-added facilities integrated with a sawmill. The models were then used to explore the financial benefits for a sawmill to integrate a value-added lumber manufacturing facility at the back end of the mill. Net revenues are compared from the sawmill's point of view for two experimental cases. In Case 1 the sawmill sells its entire lumber production to the market (including to an independent value-added facility). In Case 2, the sawmill sells only the lumber that it is not directed to the value-added facility for further processing. Net revenue for Case 2 exceeds the net revenue of Case 1 by 10%. Results shown demonstrate that production decisions in the value-added facility had a significant influence on production decisions in the sawmill

    A REVIEW OF PHYTOREMEDIATION STRATEGIES FOR SOILS POLLUTED WITH HEAVY METALS

    Get PDF
    Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Heavy metal pollution has serious implications for the human health and the environment. Since heavy metals are nonbiodegradable, they accumulate in the environment and subsequently contaminate the food chain. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Different physical and chemical methods used for this purpose suffer from serious limitations like high cost, intensive labor, alterationof soil properties and disturbance of soil native microorganisms. Phytoremediationis the use of plants and associated soil microbes to reduce the concentrations or toxic effects of contaminants in the environments. In this article are reviewed the stratagies in the phytoremediation for remediating heavy metals from polluted soils. Phytoextraction and phytostabilization are the most promising and alternative methods for soil reclamation

    The first coefficients of the asymptotic expansion of the Bergman kernel of the spin^c Dirac operator

    Full text link
    We establish the existence of the asymptotic expansion of the Bergman kernel associated to the spin-c Dirac operators acting on high tensor powers of line bundles with non-degenerate mixed curvature (negative and positive eigenvalues) by extending the paper " On the asymptotic expansion of Bergman kernel " (math.DG/0404494) of Dai-Liu-Ma. We compute the second coefficient b_1 in the asymptotic expansion using the method of our paper "Generalized Bergman kernels on symplectic manifolds" (math.DG/0411559).Comment: 21 pages, to appear in Internat. J. Math. Precisions added in the abstrac

    A note on the calculation of the effective range

    Full text link
    The closed form of the first order non-linear differential equation that is satisfied by the effective range within the variable phase formulation of scattering theory is discussed. It is shown that the conventional method of determining the effective range, by fitting a numerical solution of the Schr\"odinger equation to known asymptotic boundary conditions, can be modified to include the first order contribution of a long range interaction.Comment: 4 page

    Disease Knowledge Transfer across Neurodegenerative Diseases

    Get PDF
    We introduce Disease Knowledge Transfer (DKT), a novel technique for transferring biomarker information between related neurodegenerative diseases. DKT infers robust multimodal biomarker trajectories in rare neurodegenerative diseases even when only limited, unimodal data is available, by transferring information from larger multimodal datasets from common neurodegenerative diseases. DKT is a joint-disease generative model of biomarker progressions, which exploits biomarker relationships that are shared across diseases. Our proposed method allows, for the first time, the estimation of plausible, multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare neurodegenerative disease where only unimodal MRI data is available. For this we train DKT on a combined dataset containing subjects with two distinct diseases and sizes of data available: 1) a larger, multimodal typical AD (tAD) dataset from the TADPOLE Challenge, and 2) a smaller unimodal Posterior Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for which only a limited number of Magnetic Resonance Imaging (MRI) scans are available. Although validation is challenging due to lack of data in PCA, we validate DKT on synthetic data and two patient datasets (TADPOLE and PCA cohorts), showing it can estimate the ground truth parameters in the simulation and predict unseen biomarkers on the two patient datasets. While we demonstrated DKT on Alzheimer's variants, we note DKT is generalisable to other forms of related neurodegenerative diseases. Source code for DKT is available online: https://github.com/mrazvan22/dkt.Comment: accepted at MICCAI 2019, 13 pages, 5 figures, 2 table
    corecore