
High-level Automatic Pipelining for Sequential Circuits ∗

Maria-Cristina V. Marinescu
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

cristina@lcs.mit.edu

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

rinard@lcs.mit.edu

ABSTRACT
This paper presents a new approach for automatically pipelin-
ing sequential circuits. The approach repeatedly extracts a
computation from the critical path, moves it into a new
stage, then uses speculation to generate a stream of values
that keep the pipeline full. The newly generated circuit re-
tains enough state to recover from incorrect speculations by
flushing the incorrect values from the pipeline, restoring the
correct state, then restarting the computation.

We also implement two extensions to this basic approach:
stalling, which minimizes circuit area by eliminating spec-
ulation, and forwarding, which increases the throughput of
the generated circuit by forwarding correct values to preced-
ing pipeline stages. We have implemented a prototype syn-
thesizer based on this approach. Our experimental results
show that, starting with a non-pipelined or insufficiently
pipelined specification, this synthesizer can effectively re-
duce the clock cycle time and improve the throughput of
the generated circuit.

Keywords
Pipeline, modular, speculation, stall, forward

1. INTRODUCTION
This paper presents a new algorithm for automatically

pipelining sequential circuits. The algorithm is based on
speculation and uses state retention and recovery to re-
spond to incorrect speculations. The paper also presents two
extensions to the basic approach: generating stall logic to
avoid incorrect speculations and the associated area penalty,
and generating forwarding logic to increase the throughput
of the resulting circuit.

Our algorithm starts with a non-pipelined or insufficiently
pipelined specification of a circuit and repeatedly shortens
its clock cycle by extracting a computation from the critical
path and moving it into a new pipeline stage. The new stage
precomputes the result of the selected expression and passes
it to the computation of the next stage that uses it. To keep

∗This research was supported in part by NSF Grant CCR-
9702297.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

the pipeline full, the new stage must produce the next value
of the expression before the final values of the variables it
accesses become available. Our algorithm achieves this goal
by speculating on the values of these variables. If the spec-
ulation is incorrect, the circuit restores its state to match
the state before the speculation, flushes the incorrect values
from the pipeline, then restarts the computation.

Our algorithm uses several techniques to improve the qual-
ity of the pipelined circuit. If the amount of state necessary
to recover from an incorrect speculation is excessive, our
algorithm can generate stall logic that causes the pipeline
stage to stall until the new values are available. This tech-
nique eliminates the need for retaining recovery state, as
the execution of the pipeline stage will never need to roll
back. Our algorithm also generates circuits that forward
the correct value to preceding pipeline stages. This tech-
nique increases the throughput of the circuit by reducing
the amount of time that the circuit spends recovering from
incorrect speculations or waiting for correct values to be-
come available.

We have built a prototype implementation of our algo-
rithm. Using our synthesizer [13] as backend, this imple-
mentation generates synthesizable Verilog at the RTL level.
We have used our implementation to automatically generate
pipelined versions of several circuits. Our results show that
our automatically generated pipelined circuits are competi-
tive with hand-generated versions.

This paper makes the following contributions:
• Approach: It presents a new approach for automatically

pipelining sequential circuits. This approach repeatedly
extracts a computation from the critical path and moves it
into a new stage. This stage uses speculation to generate a
stream of values that keep the pipeline full. The approach
reduces the clock cycle and increases the throughput of a
circuit.

• Algorithm: It presents a pipelining algorithm that im-
plements our approach. It also presents two extensions to
the approach: stalling, which reduces the amount of area
that would otherwise be required to respond to incorrect
speculations; and forwarding, which increases throughput
either by replacing values produced by incorrect specula-
tions with correct values or by making new values avail-
able earlier to the stall logic.

• Experimental Results: It presents experimental results
that prove the viability of the approach in practice.
The remainder of the paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 illustrates how a
system is specified using rewrite rules and gives an example

215

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/283230863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of what the starting and derived circuit specifications may
look like. Section 4 presents the pipelining algorithm. Sec-
tion 5 presents the experimental results. Section 6 draws
the conclusions.

2. RELATED WORK
Many high-level synthesis systems focus on the automatic

generation of highly efficient pipelined designs. Most of
this work is primarily concerned with functional pipelining.
Many synthesis tools target instruction-set architectures[10,
4, 3, 14, 15, 1, 9, 2]; our tool, on the other hand, targets the
more general class of sequential circuits. Other approaches
start with a C program [8, 5].

Kroening and Paul [11] describe a method of automat-
ing the generation of stall and forward logic starting from
a given sequential machine. Starting from hardware that is
initially partitioned into pipeline stages, the algorithm pro-
duces a circuit that can stall in any arbitrary stage while
keeping the other stages running, if possible. To implement
forwarding, the designer has to specify the registers holding
intermediate results that need to be forwarded to previous
stages in the pipeline. The goal of our research, in con-
trast, is to completely automate the pipelining transforma-
tion starting from a non-pipelined or insufficiently pipelined
specification.

Retiming [12] optimally pipelines combinatorial circuitry.
Architectural retiming [6] adds a negative/normal register
pair on a latency-constrained path, effectively pipelining the
logic without adding latency. It implements the negative
register by either precomputation or prediction of the value
that it produces.

Research by Hoe and Arvind [7] and Shen and Arvind [16]
has introduced an approach to describe, verify and syn-
thesize processors based on term rewriting systems (TRS).
They do not implement automatic pipelining, but their spec-
ification language offers comparable capabilities in this di-
rection as our language.

3. EXAMPLE
The text inside the boxes in Figure 2 and Figure 1 presents

a specification written in our high-level description language.
The figures also contain a graphical representation that we
find useful in explaining our example. We first present a
non-pipelined datapath, then a simple, three-stage, linear
pipelined datapath that our algorithm can automatically de-
rive from the non-pipelined specification. Section 4 shows
the intermediate specifications at each step of the algorithm.
We chose to present this three-stage linear pipeline because
of its simplicity; our algorithm is capable of generating deep
pipelines and is not specific to this particular class of cir-
cuits.

The designer specifies the circuit using two kinds of infor-
mation:
• State Declarations: The designer specifies the state of

the system as a set of typed variable declarations.
• Module Specification: The designer specifies the be-

havior of each module as a set of update rules. Modules
communicate by reading and writing shared state and par-
ticularly using FIFO queues.

3.1 Modules
Figure 2 and Figure 1 show the functional modules in our

non-pipelined and respectively, pipelined, examples and the
queues that interconnect them. Each module consists of a
set of update rules. An update rule has an enabling condi-
tion and a set of updates to the state. When the enabling
condition evaluates to true, the rule is enabled and can ex-
ecute, in which case its updates are atomically applied to
the state. Conceptually, the execution of the system repeat-
edly chooses an enabled rule and executes it. In practice,
our backend synthesizer analyzes and transforms the spec-
ification to execute multiple rules in parallel in the same
clock cycle, even when they do not necessarily access dis-
junct state [13].

Queues provide buffered, first-in, first-out connections be-
tween modules. Modules can perform several operations on
a queue q:
• head(q): Retrieves the first element in the queue.
• tail(q): Returns the rest of q after the first element.
• insert(q,e): Returns the queue q after inserting the

element e at the end of q.
• replace(e1,e2,q): Returns q after replacing all entries
e1 by e2.

• notin(q,e): Returns true if the element e is not in q;
otherwise returns false.

• q = nil: Resets the queue to be empty.
We next illustrate the conceptual model of execution in

our system by discussing the operation of the rules in our
example. The rules describe the structure of the hardware
pipeline and not the program that executes on it.

3.1.1 Non-pipelined Speci£cation

  

<INC r> = im[pc] ->
rf = rf[r->rf[r]+1], pc = pc+1;

<JRZ r l> = im[pc] and rf[r] = 0 ->
pc = l;

<JRZ r l> = im[pc] and rf[r] != 0 ->
pc = pc+1;

Figure 2: Non-pipelined Specification

The first rule in Figure 2 processes INC instructions. The
rules use a form of pattern matching similar to that found in
ML and Haskell. If the rule’s enabling condition is true, the
clause matches and binds the variable r to the register name
argument of the INC instruction. The rule can then use r

to refer to this argument. If enabled, the rule atomically
executes the block in the right-hand-side of the arrow. The
update rf = rf[r->rf[r]+1] sets element r of the register
file to be rf[r]+1. The other rules perform similar actions.
To keep the example clear, the instruction set contains only
an INC instruction, which increments the value in its single
register argument, and a JRZ instruction, which tests the
value in its register argument and, if the value is zero, jumps
to the location in its location argument.

3.1.2 Three-stage Pipelined Speci£cation
The condition for the rule in module IFM of Figure 1 is

true, which means that the rule is always enabled. When
it executes, it fetches an instruction from the instruction
memory and inserts it into the instruction queue iq. It also
increments the program counter pc to set up the next fetch.

216



updates
condition

rq
<INC r v> = head(rq) -> 

iq = tail(iq), rq = insert(rq,<INC r rf[r]>)
rf = rf[r->v+1], rq = tail(rq);

iq = tail(iq), rq = insert(rq,<JRZ rf[r] l>);

<INC r> = head(iq) and

...

  iq                 notin(rq,<INC r _>) ->

notin(rq,<INC r _>) ->
<JRZ r l> = headIiq) and

<JRZ v l> = head(rq) and v != 0 ->

enabling 

  INSTRUCTION FETCH MODULE - IFM     REGISTER OPERAND FETCH MODULE - ROFM COMPUTE AND WRITEBACK MODULE - CWBM

iq = insert(iq,im[pc]),

rq = tail(rq);

pc = l, iq = nil, rq = nil;
<JRZ v l> = head(rq) and v = 0 ->

RESET RESET

true ->
...      

pc = pc + 1;

Figure 1: Three-stage Pipelined Specification

The two rules in the module ROFM remove instructions
from iq, fetch the register operands, and insert them into
rq. The enabling condition of the first rule is <INC r> =

head(iq) and notin(rq, <INC r >). If the instruction at
the head of iq is an INC, the clause matches and binds r

to the register name argument of the INC instruction. The
second clause, notin(rq, <INC r >) uses the binding r to
check for a read after write (RAW) hazard caused by a pend-
ing instruction in rq that will write the register r. In this
case, the machine delays the operand fetch so that it fetches
the value after the write (this translates into stalling1).
The clause notin(rq, <INC r >) checks to make sure that
there is no such instruction in rq, and the rule as a whole is
enabled and can execute only if there is no hazard.

The other rules perform similar actions. The update iq/rq
= nil clears the queue(s) iq/rq.

3.2 State

3.2.1 Non-pipelined Speci£cation
Figure 3 presents the state and type declarations for Fig-

ure 2.

1 type reg = int(3), val = int(8), loc = int(8);

2 type ins = <INC reg> | <JRZ reg loc>;

4 var pc : loc, im : ins[N], rf : val[8];

Figure 3: State Variables and Type Declarations for
Example in Figure 2

Line 4 in Figure 3 presents the state declarations, which
consist of the following state variables: a program counter
pc, an instruction memory im and a register file rf. Lines 1
and 2 contain the type declarations for these variables. The
type declarations include a 3 bit register name type reg,
an 8 bit integer type val, an 8 bit integer type loc which
represents the locations of instructions in the instruction
memory and an instruction type ins. The instruction type
is a tagged union type, similar to those found in ML and
Haskell and contains only an INC and a JRZ instruction.

3.2.2 Three-stage Pipelined Speci£cation
Figure 4 presents the state and type declarations for Fig-

ure 1. Line 5 in Figure 4 declares the two queues, iq and
rq. Line 3 contains the type declaration for instructions
whose register operands have been fetched from the register

1We chose here to present stalling for the sake of simplicity
of the presentation.

file. The rest of the declarations are identical to the ones in
Figure 3.

1 type reg = int(3), val = int(8), loc = int(8);

2 type ins = <INC reg> | <JRZ reg loc>;

3 type irf = <INC reg val> | <JRZ val loc>;

4 var pc : loc, im : ins[N], rf : val[8];

5 var iq = queue(ins), rq = queue(irf);

Figure 4: State Variables and Type Declarations for
Example in Figure 1

4. PIPELINING ALGORITHM

4.1 Basic Approach
The pipelining algorithm starts with a non-pipelined or

insufficiently pipelined specification and automatically gen-
erates a highly-pipelined, functionally equivalent specifica-
tion. The algorithm repeatedly extracts an expression from
a target module and creates a new module to compute the
value of the expression at each clock cycle. It then uses
a stream to transport the computed values from the new
module into the target module from which the expression
was extracted. The length of the stream is conceptually
unbounded. The synthesis algorithm we developed in [13]
implements all the streams in the final specification as finite
hardware buffers. This algorithm operates on the resulting
specification once the pipelining algorithm has finished. Our
pipelining algorithm transforms the target module so that
it reads the value of the expression from the stream instead
of computing its value. Because this transformation splits
computations across multiple clock cycles, it may reduce the
clock cycle of the circuit and increase its throughput.

In general, the extracted subcomputation may depend on
values that are not available until after it must produce
the new value. The compiler therefore speculates on the
values that the subcomputation uses. If the speculation is
incorrect, the circuit restores the values of any incorrectly
updated variables and restarts the computation from the
restored state. To enable the restoration, the transformed
specification inserts the old values of any potentially incor-
rectly updated variables into the new stream. When the
circuit encounters an incorrect speculation, it extracts these
values from the stream and uses them to restore any incor-
rectly updated variables to their correct values. The algo-
rithm consists of seven phases for each further pipelining de-
cision. The steps are illustrated using Figure 2, Figure 1 and
Figure 6. Figure 6 is the intermediate two-stage pipelined

217



specification derived from Figure 2 by applying the algo-
rithm once.
• Select Target Expression: The selection of the target

expression is driven by an analysis of the combinational
path lengths in the circuit. The algorithm repeatedly de-
termines the critical path, then chooses a target expres-
sion on this critical path. Inserting the computation of the
target expression into a different stage of the pipeline re-
moves the expression from the critical path, shortening its
length. A more general approach could be implemented
that uses a wider set of paths than the critical one(s) in
deciding which expression to select as target. In addi-
tion to selecting the target expression automatically, our
implemented system also allows the designer to drive the
pipelining process by manually selecting the target ex-
pression. For Figure 2 the algorithm selects im[pc]; for
Figure 6 the target expression is rf[r].

• Compute All Involved Variables: The value of the
target expression depends on the variables that it refer-
ences. This set of variables is called the set of involved
variables.
For the specification in Figure 2, the set of all involved
variables of im[pc] is {im,pc}. For Figure 6, the set of
all involved variables of rf[r] is {rf,head(iq)}.

• Speculate on New Values of Involved Variables:
The pipelining algorithm will move the computation of
the target expression into a new module. This module
will compute the value of the target expression in a clock
cycle before the final values of the involved variables have
been determined. The module therefore speculates on the
final values of these variables, using the speculated values
to compute the value of the target expression. There are
two kinds of speculation:
• Control: Speculate on which rule will fire. For the

involved variable pc in Figure 2 we speculate that the
first rule will fire. This choice implies that the new
value of pc is pc+1. For iq in Figure 6 we speculate
that the first rule in the rightmost box will fire, so iq’s
new speculated value is tail(iq).

• Data Hazard: Speculate on the absence of data haz-
ards. For involved variable rf in Figure 6, we speculate
that there will be no writes to rf[r].

• Generate a Stream of Values: Generate a stream con-
taining the sequence of values of the target expression and
transform the specification to use these values. For each
rule that originally read the target expression:
• Modify the rule so that it now reads from the head of

the new stream.
• Replace all occurrences of the expression with the value

read from the stream.
• Update Involved Variables: Augment the new mod-

ule to update the involved variables with their speculated
values. This operation ensures that, during the next clock
cycle, the specification will generate an appropriate next
value for the target expression.
Figure 6 presents the results of this transformation for
the specification in Figure 2 and target expression im[pc].
Figure 1 presents the results of this transformation for the
specification in Figure 6 and target expression rf[r].

• Augment Stream to Handle Failed Speculations: If
the speculation is incorrect, the specification must restore
the updated variables (the set of all variables updated as
a result of the speculation) to their correct values. The

algorithm therefore augments the generated stream with
the values of the updated variables before the speculation.
The set of updated variables for im[pc] is {pc}. The set
of updated variables for rf[r] is {rf,iq}.
The algorithm transforms the specification to detect in-
correct speculations and, when necessary, use the values
in the stream to restore the correct state of the system
and clear the stream. The system will therefore restart
from a consistent state.
For the non-pipelined example in Figure 2, Figure 5 shows
the resulting specification after the algorithm executes
this step.

      ...

  iq

pc = l, iq = nil;

iq = tail(iq), rf = rf[r->rf[r]+1];

  

iq = tail(iq);

RESET

<INC r a> = head(iq) ->

<JRZ r l a> = headIiq) and rf[r] = 0 ->

<JRZ r l a> = head(iq) and rf[r] != 0 ->

iq = insert(iq,<im[pc] pc>),
pc = pc + 1;

true ->

Figure 5: Specification After Stream Augmentation
for Handling Failed Speculations

• Remove Unused Values from Stream: After updat-
ing all the rules that read the target expression, eliminate
all the fields of stream entries that were saved and never
used again.
As we notice in Figure 5, field a of iq is never used, so
we can safely remove it from the stream to obtain the
specification in Figure 6.

      ...

  iq

pc = l, iq = nil;

iq = tail(iq), rf = rf[r->rf[r]+1];

  

iq = tail(iq);

RESET

<INC r> = head(iq) ->

<JRZ r l> = headIiq) and rf[r] = 0 ->

<JRZ r l> = head(iq) and rf[r] != 0 ->

iq = insert(iq,im[pc]),
pc = pc + 1;

true ->

Figure 6: 2-stage Intermediate Specification

4.2 Optimizations
We next present how our algorithm generates logic that

implements two techniques — stalling and forwarding —
which can improve the quality and performance of the au-
tomatically pipelined circuit.

We first present the circuit that responds to incorrect
speculations by restoring saved state. Figure 7 shows the
transformation schema for a rule Ri

Ri: e = head(str) and Pi → Ai

that reads some target expression TE. e = head(str) and Pi

is the enabling condition of Ri; both clauses are optional. A
missing clause reads as a true clause. Ai consists of all the
updates performed by rule Ri.

In Figure 7, IV stands for the set of involved variables of
TE and UV for the corresponding set of updated variables.
IV is the disjunct union of two subsets: IVctrl — the set
of involved variables on which the algorithm applies con-
trol speculation, and IVDH — the set of involved variables
on which it applies data hazard speculation. The specu-
lated value of TE is TE’, and the set of speculated values for

218



the elements of IVctrl is IV ′
ctrl. Ai.upd(IV) returns the set

of values that Ai updates the involved variables in IV to.
Ai(IV) returns the updates in Ai that write the involved
variables in IV. newstr is the newly generated stream of val-
ues for target expression TE. dataHazard(E) returns true if
head(newstr) writes the expression E in the current clock
cycle and at least one entry in tail(newstr) reads it.

Ri1: e1 = head(str) →
newstr = insert(newstr,<e1 TE[IV

′
ctrl/IVctrl] UV>),

IVctrl = IV
′
ctrl;

If control speculation:

If Ai.upd(IV) = IV
′
ctrl then:

Ri2: <e2 TE2 UV2> = head(newstr) and

Pi[UV2/UV,TE2/TE] →
newstr = tail(newstr),

Ai[UV2/UV,TE2/TE] \ Ai(IV);

Otherwise:

Ri2: <e2 TE2 UV2> = head(newstr) and

Pi[UV2/UV,TE2/TE] →
UV = UV2, // restore UV

newstr = nil, // clear stream

Ai; // update

If data hazard speculation:

R
′
i2: <e2 TE2 UV2> = head(newstr) and

Pi[UV2/UV,TE2/TE] and

no dataHazard(TE ∪ IVDH) →
newstr = tail(newstr),

Ai[UV2/UV,TE2/TE] \ Ai(IV);

R
′′
i2: <e2 TE2 UV2> = head(newstr) and

Pi[UV2/UV,TE2/TE] and

dataHazard(TE ∪ IVDH) →
UV = UV2, // restore UV

newstr = nil, // clear stream

Ai; // update

Figure 7: Restoration Schema

Assume we apply this transformation to the specification
in Figure 6, for TE = rf[r]. Figure 8 presents the INC

instruction that this transformation generates. The first
clause of each newly derived rule reads the head of rq and
binds r, x and s to the arguments of the INC instruction.
The clause notin(tail(rq),< r >) checks if there is an
entry in tail(rq) that reads rf[r]. This is the check for a
data hazard on rf[r] for the INC instruction. In case of a
hazard — second rule in Figure 8 — all the updated vari-
ables, in our case iq, have to be restored to their old values.
We would like to avoid having to store and carry the whole
instruction stream iq along, up to the restoration point. In
this case, a viable approach is stalling the pipeline stage that
reads rf[r] until all data hazards are cleared.

<INC r x s> = head(rq) and

notin(tail(rq),< r >) →
rf = rf[r->x+1], rq = tail(rq);

<INC r x s> = head(rq) and

~notin(tail(rq),< r >) →
iq = tail(s), rq = nil, rf = rf[r->x+1];

Figure 8: Roll-back Scheme for INC instructions

4.2.1 Stalling
Let S be the set of all target expressions on which the

algorithm speculates. For TE ∈ S, let {Ri} be the set of rules
that generate the speculated values of TE and let this stream
be Q1. Let {Qn} be the set of streams that the rules that
write TE read from. To eliminate the need to restore state
in case of a failed speculation on TE, the algorithm modifies
the preconditions of all rules in {Ri} to check that either 1)
no item in any stream from Q1 to {Qn} will generate a write
to TE or 2) all items that update TE write the same known
value. This approach implements the stalling mechanism;
Figure 1 presents its results for our example.

Let R21 and R22 be the two resulting rules from splitting
the rule in Figure 6 handling INC instructions. The check
for data hazards is now handled by R21, which will not fire
and read the target expression rf[r] until all the previous
rules writing rf[r] did so:

R21:<INC r> = head(iq) and notin(rq,<INC r >) →
iq = tail(iq),

rq = insert(rq,<INC r rf[r]>);

Rule R22 does not anymore need to check for data hazards
for the current target expression — in our example rf[r].
There is no speculation on fly regarding the absence of a
data hazard and therefore no need to save the instruction
queue in the newly generated stream of values for rf[r].
The derived R22 will have the form below:

R22:<INC r v> = head(rq) →
rf = rf[r->v+1], rq = tail(rq);

Stalling trades the potentially higher throughput of spec-
ulative execution for a smaller circuit area. This trade-off
requires a policy to decide when it is better to stall the
pipeline or when it is better to speculate. The decision de-
pends primarily on the accuracy of the predictions and the
amount of state that needs to be saved for restoration pur-
poses. Also, if all all the rules ahead in the pipeline will
update TE with the same known value, the circuit can safely
generate the next value of TE even if some rule will write TE.
Therefore, a stalling check replacing a data hazard specula-
tion waits until TE is hazard-free; a stalling check replacing
a control speculation waits until all the previous rules in the
pipeline can only update TE with the same known value.

4.2.2 Forwarding
Regardless of whether the algorithm speculates on the

value of TE or stalls the pipeline, waiting for its correct
value to become available, generating forwarding logic may
increase the throughput of the circuit. To implement for-
warding, the algorithm replaces the obsolete values of TE

in Q1 with their correct, updated values. Figure 10 shows
how the technique updates a rule to implement the bypass.
updatedTE stands for the newly computed, correct value of
TE.

<INC r x> = head(rq) →
rq = replace (<INC r >,<INC r x+1>,

replace (<JRZ r >,<JRZ r x+1>,

tail(rq))),

rf = rf[r->x+1];

Figure 9: Forward Scheme for INC instructions

Forwarding transforms the two rules handling INC instruc-
tions in Figure 8 into the single new rule in Figure 9. This

219



rule produces a circuit that updates all of the entries in rq

produced by rules that accessed rf[r] with the new correct
value x+1.

R
′
i1: e1= head(str) and dataHazard(TE) →

newstr = insert(newstr,<e1 updatedTE UV>),

IVctrl = IV
′
ctrl;

R
′′
i1: e1 = head(str) and no dataHazard(TE) →

newstr = insert(newstr,<e1 TE[IV
′
ctrl/IVctrl] UV>),

IVctrl = IV
′
ctrl;

If control speculation:

If Ai.upd(IV) = IV
′
ctrl then:

Ri2: <e2 TE2 UV2> = head(newstr) and

Pi[UV2/UV,TE2/TE] →
newstr = tail(newstr)[updatedTE/TE2],

Ai[UV2/UV,TE2/TE] \ Ai(IV);

Otherwise:

Ri2: <e2 TE2 UV2> = head(newstr) and

Pi[UV2/UV,TE2/TE] →
UV = UV2, // restore UV

newstr = nil, // clear stream

Ai; // update

If data hazard speculation:

R
′
i2: <e2 TE2 UV2> = head(newstr) and

Pi[UV2/UV,TE2/TE] and

no dataHazard(IVDH) →
newstr = tail(newstr)[updatedTE/TE2],

Ai[UV2/UV,TE2/TE] \ Ai(IV);

R
′′
i2: <e2 TE2 UV2> = head(newstr) and

Pi[UV2/UV,TE2/TE] and

dataHazard(IVDH) →
UV = UV2, // restore UV

newstr = nil, // clear stream

Ai; // update

Figure 10: Forward Scheme

Forwarding reduces the amount of time that the circuit
spends recovering from incorrect speculations or waiting for
correct values to become available. It may therefore increase
the throughput of the circuit.

5. EXPERIMENTAL RESULTS
We have implemented the pipelining algorithm within our

prototype synthesizer, which generates synthesizable Verilog
implementations at the RTL level. We then by compared the
results obtained by our algorithm against a hand-written
version that implements the same basic functionality with
our example processor. We wrote a non-pipelined specifica-
tion of a 32-bit datapath processor with a complete instruc-
tion set2 and ran it through our pipelining algorithm for all
the pipeline buffers of depth one. The resulting pipelined
specification was then fed into the synthesizer to obtain a
Verilog model for it. This model was then synthesized using
the Synopsis Design Compiler to an industry standard .25
micron standard cell process. To serve as a reference point,
we also synthesized, in the same environment, the Santa
Clara University SCU RTL 98 DSP, a hand-written (in Ver-
ilog), standard 32-bit fixed point DSP that implements the
same basic functionality. Our automatically pipelined ver-
sion had a cycle time of 88.9 MHz as opposed to a 90.9 MHz
2The instruction set contains load, store, jump, ALU, mul-
tiply and variable shift operations, but no division.

cycle time for the hand-pipelined version; the synthesized
areas were virtually identical.

It took us approximately fifteen minutes to write the spec-
ification for the non-pipelined processor and less than one
minute to run it through our pipeline algorithm. Our spec-
ification contains 7 lines for state declarations and 10 lines
of rule definitions for module specifications. Our automati-
cally generated implementation consists of about 1200 lines
of synthesizable Verilog. We tested the generated Verilog
model using the Cadence NCVerilog simulator.

6. CONCLUSIONS
This paper presents a new approach for automatically

pipelining sequential circuits: repeatedly extract a compu-
tation from the critical path, move it into a new stage, then
use speculation to generate a stream of values that keep
the pipeline full. We also present extensions that integrate
stalling and forwarding into this basic approach. Our ex-
perimental results provide encouraging evidence that the
approach can deliver efficient pipelined implementations.

7. REFERENCES
[1] M. Breternitz and J. P. Shen. Architecture synthesis of

high-performance application-specific processors. In
Proceedings of the 27th ACM/IEEE Design Automation
Conference, 1990.

[2] F. Chang and A. Hu. Fast specification of cycle-accurate
processor models. To appear in ICCD 2001, 2001.

[3] R. J. Cloutier and D. E. Thomas. Synthesis of pipelined
instruction set processors. In Proceedings of the 30th
ACM/IEEE Design Automation Conference, 1993.

[4] H. D. M. G. Goossens, J. Rabaey and J. Vandewalle. An
efficient microcode-compiler for custom DSP-processors. IEEE
Transactions on Computer-Aided Design, 9:925–937, 1990.

[5] G. Goossens, J. Vandewalle, and H. DeMan. Loop optimization
in register-transfer scheduling for DSP-systems. In Proceedings
of the 26th ACM/IEEE Design Automation Conference, 1989.

[6] S. Hassoun and C. Ebeling. Architectural retiming: Pipelining
latency-constrained circuts. In Proceedings of the 33rd
ACM/IEEE Design Automation Conference.

[7] J. Hoe and Arvind. Hardware synthesis from term rewriting
systems. In VLSI: Systems on a chip, Lisbon, Portugal, Dec.
1999.

[8] U. Holtmann and R. Ernst. Combining MBP-speculative
computation and loop pipelining in high-level synthesis. In ED
& TC, 1995.

[9] I.-J. Huang and A. M. Despain. High level synthesis of
pipelined instruction set processors and back-end compilers. In
Proceedings of the 29th ACM/IEEE Design Automation
Conference, 1992.

[10] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin. Scheduling for
functional pipelining and loop winding. In Proceedings of the
28th ACM/IEEE Design Automation Conference.

[11] D. Kroening and W. Paul. Automated pipeline design. In
Proceedings of the 38th ACM/IEEE Design Automation
Conference, Las Vegas, 2001.

[12] C. E. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous
circuitry by retiming. In Proceedings of the 3rd Caltech
Conference on VLSI.

[13] M.-C. Marinescu and M. C. Rinard. High-level specification
and efficient implementation of pipelined circuits. In
Proceedings of the ASP-DAC, 2001.

[14] N. Park and A. C. Parker. Sehwa: A software package for
synthesis of pipelines from behavioral specifications. IEEE
Transactions on Computer-Aided Design, 7:356–370, 1988.

[15] P. B. Paulin and J. P. Knight. Force-directed scheduling for the
behavioral synthesis of ASIC’s. IEEE Transactions on
Computer-Aided Design, 8:661–679, 1989.

[16] X. Shen and Arvind. Using term rewriting systems to design
and verify processors. IEEE Micro Special Issue on ”Modeling
and Validation of Microprocessors”, 1999.

220


	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index




