9 research outputs found
Contribution of copy number variants (CNVs) to congenital, unexplained intellectual and developmental disabilities in Lebanese patients
International audienceBackground: Chromosomal microarray analysis (CMA) is currently the most widely adopted clinical test for patients with unexplained intellectual disability (ID), developmental delay (DD), and congenital anomalies. Its use has revealed the capacity to detect copy number variants (CNVs), as well as regions of homozygosity, that, based on their distribution on chromosomes, indicate uniparental disomy or parental consanguinity that is suggestive of an increased probability of recessive disease. Results: We screened 149 Lebanese probands with ID/DD and 99 healthy controls using the Affymetrix Cyto 2.7 M and SNP6.0 arrays. We report all identified CNVs, which we divided into groups. Pathogenic CNVs were identified in 12.1% of the patients. We review the genotype/phenotype correlation in a patient with a 1q44 microdeletion and refine the minimal critical regions responsible for the 10q26 and 16q monosomy syndromes. Several likely causative CNVs were also detected, including new homozygous microdeletions (9p23p24.1, 10q25.2, and 8p23.1) in 3 patients born to consanguineous parents, involving potential candidate genes. However, the clinical interpretation of several other CNVs remains uncertain, including a microdeletion affecting ATRNL1. This CNV of unknown significance was inherited from the patient's unaffected-mother; therefore, additional ethnically matched controls must be screened to obtain enough evidence for classification of this CNV. Conclusion: This study has provided supporting evidence that whole-genome analysis is a powerful method for uncovering chromosomal imbalances, regardless of consanguinity in the parents of patients and despite the challenge presented by analyzing some CNVs
Contribution of copy number variants (CNVs) to congenital, unexplained intellectual and developmental disabilities in Lebanese patients
Recommended from our members
Cks confers specificity to phosphorylation-dependent CDK signaling pathways.
Cks is an evolutionarily conserved protein that regulates cyclin-dependent kinase (CDK) activity. Clarifying the underlying mechanisms and cellular contexts of Cks function is critical because Cks is essential for proper cell growth, and its overexpression has been linked to cancer. We observe that budding-yeast Cks associates with select phosphorylated sequences in cell cycle-regulatory proteins. We characterize the molecular interactions responsible for this specificity and demonstrate that Cks enhances CDK activity in response to specific priming phosphosites. Identification of the binding consensus sequence allows us to identify putative Cks-directed CDK substrates and binding partners. We characterize new Cks-binding sites in the mitotic regulator Wee1 and discover a new role for Cks in regulating CDK activity at mitotic entry. Together, our results portray Cks as a multifunctional phosphoadaptor that serves as a specificity factor for CDK activity
Whi5 is diluted and protein synthesis does not dramatically increase in pre-<i>Start</i> G1
In their manuscript, Litsios et al.1 report a new model for how cell growth and biosynthetic activity control the G1/S transition in budding yeast. In essence, Litsios et al. claim that Start is driven by an increasing concentration of the G1 cyclin Cln3 due to a dramatic acceleration of protein synthesis in pre-Start G1 and not by the dilution of the cell cycle inhibitor Whi5. While we previously reported that Start was in part driven by cell growth during G1 diluting out the Start inhibitor Whi52, Litsios et al. report that Whi5 remains at constant concentration during G1, and changes in Whi5 concentration therefore do not contribute to Start.Since Litsios et al. directly contradict several key points of our own model of how cell growth triggers Start, we decided to investigate their claims and data. More specifically, we decided to investigate Litsios et al.’s three major claims:
Whi5 concentration remains constant during G1Cln3 concentration strongly increases prior to StartGlobal protein synthesis rates increase by 2-3 fold prior to StartWe investigated each of these three claims and found that the evidence presented by Litsios et al. does not support their claims due to inadequate analysis methods and flaws in their experiments.</jats:p
Whi5 is diluted and protein synthesis does not dramatically increase in pre-<i>Start</i> G1
A de novo microdeletion in a patient with inner ear abnormalities suggests that the 10q26.13 region contains the responsible gene
Cks confers specificity to phosphorylation-dependent CDK signaling pathways.
Cks is an evolutionarily conserved protein that regulates cyclin-dependent kinase (CDK) activity. Clarifying the underlying mechanisms and cellular contexts of Cks function is critical because Cks is essential for proper cell growth, and its overexpression has been linked to cancer. We observe that budding-yeast Cks associates with select phosphorylated sequences in cell cycle-regulatory proteins. We characterize the molecular interactions responsible for this specificity and demonstrate that Cks enhances CDK activity in response to specific priming phosphosites. Identification of the binding consensus sequence allows us to identify putative Cks-directed CDK substrates and binding partners. We characterize new Cks-binding sites in the mitotic regulator Wee1 and discover a new role for Cks in regulating CDK activity at mitotic entry. Together, our results portray Cks as a multifunctional phosphoadaptor that serves as a specificity factor for CDK activity
