112 research outputs found

    Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine

    Get PDF
    The process of electrostatic extrusion as a method for cell immobilization was investigated that could be used for potential applications in medicine. An attempt was made to assess the effects of cell addition and polymer concentration on the overall entrapment procedure, ie, on each stage of immobilization: polymer-cell suspension rheological characteristics, electrostatic extrusion process, and the process of gelation. The findings should contribute to a better understanding of polymer–cell interactions, which could be crucial in possible medical treatments. Alginate–yeast was used as a model system for carrier-cells. The electrostatic extrusion was considered as a complex two-phase flow system and the effects of cell and alginate concentrations on the resulting microbead size and uniformity were assessed. Under investigated conditions, microbeads 50–600 ÎŒm in diameter were produced and the increase in both alginate and cell concentrations resulted in larger microbeads with higher standard deviations in size. We attempted to rationalize the findings by rheological characterization of the cell–alginate suspensions. Rheological characterization revealed non-Newtonian, pseudoplastic behavior of cell-alginate suspensions with higher viscosities at higher alginate concentrations. However, the presence of cells even at high concentrations (5×108 and 1×109 cells/mL) did not significantly affect the rheological properties of Na-alginate solution. Lastly, we investigated the kinetics of alginate gelation with respect to the quantity of Ca2+ ions and cell presence. The gelation kinetics were examined under conditions of limited supply with Ca2+ ions, which can be essential for immobilization of highly sensitive mammalian cells that require minimal exposure to CaCl2 solution. The molar ratio of G units to Ca2+ ions of 3.8:1 provided complete crosslinking, while the increase in alginate concentration resulted in prolonged gelation times but higher strength of the resulting gel. The cell presence decreased the rate of network formation as well as the strength of the obtained Ca-alginate hydrogel

    Cosmological Histories for the New Variables

    Get PDF
    Histories and measures for quantum cosmology are investigated through a quantization of the Bianchi IX cosmology using path integral techniques. The result, derived in the context of Ashtekar variables, is compared with earlier work. A non-trivial correction to the measure is found, which may dominate the classical potential for universes on the Planck scale.Comment: 14, CGPG-94/2-

    Free-Field Realization of D-dimensional Cylindrical Gravitational Waves

    Get PDF
    We find two-dimensional free-field variables for D-dimensional general relativity on spacetimes with D-2 commuting spacelike Killing vector fields and non-compact spatial sections for D>4. We show that there is a canonical transformation which maps the corresponding two-dimensional dilaton gravity theory into a two-dimensional diffeomorphism invariant theory of the free-field variables. We also show that the spacetime metric components can be expressed as asymptotic series in negative powers of the dilaton, with coefficients which can be determined in terms of the free fields.Comment: 15 pages, Late

    SU(2)-invariant reduction of the 3+1 dimensional Ashtekar's gravity

    Full text link
    We consider a space-time with spatial sections isomorphic to the group manifold of SU(2). Triad and connection fluctuations are assumed to be SU(2)-invariant. Thus, they form a finite dimensional phase space. We perform non-perturbative path integral quantization of the model. Contarary to previous claims the path integral measure appeared to be non-singular near configurations admitting additional Killing vectors. In this model we are able to calculate the generating functional of Green functions of the reduced phase space variables exactly.Comment: 12 page

    Constants of motion for vacuum general relativity

    Get PDF
    The 3+1 Hamiltonian Einstein equations, reduced by imposing two commuting spacelike Killing vector fields, may be written as the equations of the SL(2,R)SL(2,R) principal chiral model with certain `source' terms. Using this formulation, we give a procedure for generating an infinite number of non-local constants of motion for this sector of the Einstein equations. The constants of motion arise as explicit functionals on the phase space of Einstein gravity, and are labelled by sl(2,R) indices.Comment: 10 pages, latex, version to appear in Phys. Rev. D

    Optimizing strength training protocols in young females: A comparative study of velocity-based and percentage-based training programs

    Get PDF
    The purpose of this study was to compare the effects of velocity-based strength training (VBT) and percentage-based strength training (PBT) on absolute strength, explosive strength, speed, and agility, as well as markers of muscle damage after 6 weeks of exercise programs. The study included 30 young female individuals, divided into three groups of 10 participants: VBT, PBT, and control group. The main findings indicated that the VBT group and PBT group showed significant improvement in 1RM squat exercise (Δ% 27.87 and Δ% 8.98, respectively) and 1RM bench press (Δ% 14.47 and Δ% 8.65, respectively), but a greater enhancement was observed in the VBT group. In addition, VBT induced substantial changes in SJ (Δ% 14.32) and CMJ height (Δ% 7.69), while PBT had an improvement only in the SJ test (Δ% 6.72). The improvement noted in the VBT group could be attributed to its ability to tailor training intensity according to the speed of movement execution. This approach allows athletes to perform each repetition as fast as possible, thus maintaining an optimal intensity for explosive strength development. The capacity of VBT to adapt training intensity based on the speed of movement execution may be the key factor contributing to these results. Therefore, coaches and athletes should consider implementing VBT as a valuable tool to optimize strength and power development. In conclusion, VBT induced greater improvement in the 1RM squat, 1RM bench press, SJ, and CMJ compared to the group that performed the traditional strength training modality. Therefore, VBT is considered a more effective training tool regarding the development of absolute and explosive strength in young women

    Functional evolution of quantum cylindrical waves

    Get PDF
    Kucha{\v{r}} showed that the quantum dynamics of (1 polarization) cylindrical wave solutions to vacuum general relativity is determined by that of a free axially-symmetric scalar field along arbitrary axially-symmetric foliations of a fixed flat 2+1 dimensional spacetime. We investigate if such a dynamics can be defined {\em unitarily} within the standard Fock space quantization of the scalar field. Evolution between two arbitrary slices of an arbitrary foliation of the flat spacetime can be built out of a restricted class of evolutions (and their inverses). The restricted evolution is from an initial flat slice to an arbitrary (in general, curved) slice of the flat spacetime and can be decomposed into (i) `time' evolution in which the spatial Minkowskian coordinates serve as spatial coordinates on the initial and the final slice, followed by (ii) the action of a spatial diffeomorphism of the final slice on the data obtained from (i). We show that although the functional evolution of (i) is unitarily implemented in the quantum theory, generic spatial diffeomorphisms of (ii) are not. Our results imply that a Tomanaga-Schwinger type functional evolution of quantum cylindrical waves is not a viable concept even though, remarkably, the more limited notion of functional evolution in Kucha{\v{r}}'s `half parametrized formalism' is well-defined.Comment: Replaced with published versio

    Einstein's equations and the chiral model

    Get PDF
    The vacuum Einstein equations for spacetimes with two commuting spacelike Killing field symmetries are studied using the Ashtekar variables. The case of compact spacelike hypersurfaces which are three-tori is considered, and the determinant of the Killing two-torus metric is chosen as the time gauge. The Hamiltonian evolution equations in this gauge may be rewritten as those of a modified SL(2) principal chiral model with a time dependent `coupling constant', or equivalently, with time dependent SL(2) structure constants. The evolution equations have a generalized zero-curvature formulation. Using this form, the explicit time dependence of an infinite number of spatial-diffeomorphism invariant phase space functionals is extracted, and it is shown that these are observables in the sense that they Poisson commute with the reduced Hamiltonian. An infinite set of observables that have SL(2) indices are also found. This determination of the explicit time dependence of an infinite set of spatial-diffeomorphism invariant observables amounts to the solutions of the Hamiltonian Einstein equations for these observables.Comment: 22 pages, RevTeX, to appear in Phys. Rev.

    Young basketball players have better manual dexterity performance than sportsmen and non-sportsmen of the same age: a cross-sectional study

    Get PDF
    : Manual dexterity is a key skill in motor development. There are conflicting studies on the influence of sports practice on this skill and on which type of sport trains this ability the most in youth. Manual dexterity is usually assessed with expensive and time-consuming tools not easily available to facilities such as schools or sports clubs. The aim of this study was to assess differences in manual dexterity performance between young basketball players, sportsmen, and non-sportsmen. A further aim was to analyze whether the coin rotation task was a reliable tool for assessing manual dexterity. Based on the characteristics of the sport, we hypothesized that basketball players had better manual dexterity performances. Seventy-eight participants were included in the study and categorized into "basketball", "sports", and "non-sports" groups. Manual dexterity was assessed with the grooved pegboard, the coin rotation task, and the handgrip tests. The basketball group showed better performance in all tests. Significant differences were found between the basketball group and sports group and between the basketball group and non-sport group in the grooved pegboard (p < 0.05) and in the handgrip (p < 0.05) tests. Test-retest reliability of the coin rotation task scores was moderate in the basketball group (ICC2,1 0.63-0.6). Basketball practice could positively influence manual dexterity. The coin rotation task showed an acceptable construct of validity
    • 

    corecore