3,206 research outputs found

    Lego – Building a European Concept of Functionality

    Get PDF
    Reproduced with permission of the publisher

    Towards testing a two-Higgs-doublet model with maximal CP symmetry at the LHC: construction of a Monte Carlo event generator

    Get PDF
    A Monte Carlo event generator is constructed for a two-Higgs-doublet model with maximal CP symmetry, the MCPM. The model contains five physical Higgs bosons; the ρ\rho', behaving similarly to the standard-model Higgs boson, two extra neutral bosons hh' and h"h", and a charged pair H±H^\pm. The special feature of the MCPM is that, concerning the Yukawa couplings, the bosons hh', h"h" and H±H^\pm couple directly only to the second generation fermions but with strengths given by the third-generation-fermion masses. Our event generator allows the simulation of the Drell-Yan-type production processes of hh', h"h" and H±H^\pm in proton-proton collisions at LHC energies. Also the subsequent leptonic decays of these bosons into the μ+μ\mu^+ \mu^-, μ+νμ\mu^+ \nu_\mu and μνˉμ\mu^- \bar \nu_\mu channels are studied as well as the dominant background processes. We estimate the integrated luminosities needed in ppp p collisions at center-of-mass energies of 8 TeV and 14 TeV for significant observations of the Higgs bosons hh', h"h" and H±H^\pm in these muonic channels

    Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation

    Full text link
    The study of models with extended Higgs sectors requires to minimize the corresponding Higgs potentials, which is in general very difficult. Here, we apply a recently developed method, called numerical polynomial homotopy continuation (NPHC), which guarantees to find all the stationary points of the Higgs potentials with polynomial-like nonlinearity. The detection of all stationary points reveals the structure of the potential with maxima, metastable minima, saddle points besides the global minimum. We apply the NPHC method to the most general Higgs potential having two complex Higgs-boson doublets and up to five real Higgs-boson singlets. Moreover the method is applicable to even more involved potentials. Hence the NPHC method allows to go far beyond the limits of the Gr\"obner basis approach.Comment: 9 pages, 4 figure

    Effective Two Higgs Doublets in Nonminimal Supersymmetric Models

    Full text link
    The Higgs sectors of supersymmetric extensions of the Standard Model have two doublets in the minimal version (MSSM), and two doublets plus a singlet in two others: with (UMSSM) and without (NMSSM) an extra U(1)'. A very concise comparison of these three models is possible if we assume that the singlet has a somewhat larger breaking scale compared to the electroweak scale. In that case, the UMSSM and the NMSSM become effectively two-Higgs-doublet models (THDM), like the MSSM. As expected, the mass of the lightest CP-even neutral Higgs boson has an upper bound in each case. We find that in the NMSSM, this bound exceeds not very much that of the MSSM, unless tan(beta) is near one. However, the upper bound in the UMSSM may be substantially enhanced.Comment: 8 pages, 1 table, 3 figure

    Writing, Reading, and Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit Assembly

    Get PDF
    The ability of neurites of individual neurons to distinguish between themselves and neurites from other neurons and to avoid self (self-avoidance) plays a key role in neural circuit assembly in both invertebrates and vertebrates. Similarly, when individual neurons of the same type project into receptive fields of the brain, they must avoid each other to maximize target coverage (tiling). Counterintuitively, these processes are driven by highly specific homophilic interactions between cell surface proteins that lead to neurite repulsion rather than adhesion. Among these proteins in vertebrates are the clustered protocadherins (Pcdhs), and key to their function is the generation of enormous cell surface structural diversity. Here we review recent advances in understanding how a Pcdh cell surface code is generated by stochastic promoter choice; how this code is amplified and read by homophilic interactions between Pcdh complexes at the surface of neurons; and, finally, how the Pcdh code is translated to cellular function, which mediates self-avoidance and tiling and thus plays a central role in the development of complex neural circuits. Not surprisingly, Pcdh mutations that diminish homophilic interactions lead to wiring defects and abnormal behavior in mice, and sequence variants in the Pcdh gene cluster are associated with autism spectrum disorders in family-based genetic studies in humans

    Stability of the Scalar Potential and Symmetry Breaking in the Economical 3-3-1 Model

    Get PDF
    A detailed study of the criteria for stability of the scalar potential and the proper electroweak symmetry breaking pattern in the economical 3-3-1 model, is presented. For the analysis we use, and improve, a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. A new theorem related to the stability of the potential is stated. As a consequence of this study, the consistency of the economical 3-3-1 model emerges.Comment: to be published in EPJ C, 13 page

    Abelian symmetries in multi-Higgs-doublet models

    Full text link
    N-Higgs doublet models (NHDM) are a popular framework to construct electroweak symmetry breaking mechanisms beyond the Standard model. Usually, one builds an NHDM scalar sector which is invariant under a certain symmetry group. Although several such groups have been used, no general analysis of symmetries possible in the NHDM scalar sector exists. Here, we make the first step towards this goal by classifying the elementary building blocks, namely the abelian symmetry groups, with a special emphasis on finite groups. We describe a strategy that identifies all abelian groups which are realizable as symmetry groups of the NHDM Higgs potential. We consider both the groups of Higgs-family transformations only and the groups which also contain generalized CP transformations. We illustrate this strategy with the examples of 3HDM and 4HDM and prove several statements for arbitrary N.Comment: 33 pages, 2 figures; v2: conjecture 3 is proved and becomes theorem 3, more explanations of the main strategy are added, matches the published versio

    Prochlo: Strong Privacy for Analytics in the Crowd

    Full text link
    The large-scale monitoring of computer users' software activities has become commonplace, e.g., for application telemetry, error reporting, or demographic profiling. This paper describes a principled systems architecture---Encode, Shuffle, Analyze (ESA)---for performing such monitoring with high utility while also protecting user privacy. The ESA design, and its Prochlo implementation, are informed by our practical experiences with an existing, large deployment of privacy-preserving software monitoring. (cont.; see the paper

    Identification and Replication of Three Novel Myopia Common Susceptibility Gene Loci on Chromosome 3q26 using Linkage and Linkage Disequilibrium Mapping

    Get PDF
    Refractive error is a highly heritable quantitative trait responsible for considerable morbidity. Following an initial genome-wide linkage study using microsatellite markers, we confirmed evidence for linkage to chromosome 3q26 and then conducted fine-scale association mapping using high-resolution linkage disequilibrium unit (LDU) maps. We used a preliminary discovery marker set across the 30-Mb region with an average SNP density of 1 SNP/15 kb (Map 1). Map 1 was divided into 51 LDU windows and additional SNPs were genotyped for six regions (Map 2) that showed preliminary evidence of multi-marker association using composite likelihood. A total of 575 cases and controls selected from the tails of the trait distribution were genotyped for the discovery sample. Malecot model estimates indicate three loci with putative common functional variants centred on MFN1 (180,566 kb; 95% confidence interval 180,505–180, 655 kb), approximately 156 kb upstream from alternate-splicing SOX2OT (182,595 kb; 95% CI 182,533–182,688 kb) and PSARL (184,386 kb; 95% CI 184,356–184,411 kb), with the loci showing modest to strong evidence of association for the Map 2 discovery samples (p<10−7, p<10−10, and p = 0.01, respectively). Using an unselected independent sample of 1,430 individuals, results replicated for the MFN1 (p = 0.006), SOX2OT (p = 0.0002), and PSARL (p = 0.0005) gene regions. MFN1 and PSARL both interact with OPA1 to regulate mitochondrial fusion and the inhibition of mitochondrial-led apoptosis, respectively. That two mitochondrial regulatory processes in the retina are implicated in the aetiology of myopia is surprising and is likely to provide novel insight into the molecular genetic basis of common myopia
    corecore