614 research outputs found

    The Electron-Phonon Interaction in the Presence of Strong Correlations

    Full text link
    We investigate the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view: the strong interaction is responsible for vertex corrections, which are strongly dependent on the vFq/ωv_Fq/\omega ratio. These corrections generically lead to a strong suppression of the effective coupling between quasiparticles mediated by a single phonon exchange in the vFq/ω≫1v_Fq/\omega \gg 1 limit. However, such effect is not present when vFq/ω≪1v_Fq/\omega \ll 1. Analyzing the Landau stability criterion, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. A detailed analysis is then carried out using a slave-boson approach for the infinite-U three-band Hubbard model. In the presence of a coupling between the local hole density and a dispersionless optical phonon, we explicitly confirm the strong dependence of the hole-phonon coupling on the transferred momentum versus frequency ratio. We also find that the exchange of phonons leads to an unstable phase with negative compressibility already at small values of the bare hole-phonon coupling. Close to the unstable region, we detect Cooper instabilities both in s- and d-wave channels supporting a possible connection between phase separation and superconductivity in strongly correlated systems.Comment: LateX 3.14, 04.11.1994 Preprint no.101

    Application of an early warning to detect enteropathies in intensive broiler farming

    Get PDF
    Remote and wearable sensors can be combined with smart algorithms to continuously monitor a wide range of animal responses linked with stress, health status and welfare. The idea of real time monitoring assumes a simple way to measure variable that can give an early warning for the farmer providing clear and suitable alerts to help them in their routine. The prompt reaction to any change in health, welfare and productive status is the key for the reduction in drugs usage and for the improvement of animal wellbeing. In intensive poultry farms, enteric disorders represent a major health issue; these pathologies could be multifactorial and are a major cause of performances reduction. Monitoring poultry health status takes a key role for management to reduce chemicals/drugs and their costs. Nowadays, the preventive use of antibiotics in intensive farming system is common and this practice could lead to the spreading of drugs in the environment, contributing to the phenomenon of antibiotic resistance. Due to the high priority of this issue, it is of great importance the early detection of any health problem in intensive farming. Precision Livestock Farming, through the combination of cheap technologies and specific algorithms, can provide valuable information for farmers starting from the huge amount of data collected in real time at farm level. This study was aimed to the application of a PLF diagnostic tool, sensible to the variation of volatile organic compounds, to promptly recognize enteric problems in intensive farming, supporting veterinarians and enabling specific treatments in case of disease

    Interplay between superconductivity and flux phase in the t-J model

    Full text link
    We study the phase diagram of the t-J model using a mean field type approximation within the Baym-Kadanoff perturbation expansion for Hubbard XX-operators. The line separating the normal state from a d-wave flux or bond-order state starts near optimal doping at T=0 and rises quickly with decreasing doping. The transition temperature TcT_c for d-wave superconductivity increases monotonically in the overdoped region towards optimal doping. Near optimaldoping a strong competition between the two d-wave order parameters sets in leading to a strong suppression of TcT_c in the underdoped region. Treating for simplicity the flux phase as commensurate the superconducting and flux phases coexist in the underdoped region below TcT_c, whereas a pure flux phase exists above TcT_c with a pseudo-gap of d-wave symmetry in the excitation spectrum. We also find that incommensurate charge-density-wave ground states due to Coulomb interactions do not modify strongly the above phase diagram near the superconducting phase, at least, as long as the latter exists at all.Comment: 15 pages revtex, 8 postscript figures include

    Superconductivity in the Cuo Hubbard Model with Long-Range Coulomb Repulsion

    Full text link
    A multiband CuO Hubbard model is studied which incorporates long-range (LR) repulsive Coulomb interactions. In the atomic limit, it is shown that a charge-transfer from copper to oxygen ions occurs as the strength of the LR interaction is increased. The regime of phase separation becomes unstable, and is replaced by a uniform state with doubly occupied oxygens. As the holes become mobile a superfluid condensate is formed, as suggested by a numerical analysis of pairing correlation functions and flux quantization. Although most of the calculations are carried out on one dimensional chains, it isComment: LATEX, 14 pages, 4 figures available as postcript files or hard copy, preprint ORNL-CCIP/93/1

    The incommensurate charge-density-wave instability in the extended three-band Hubbard model

    Full text link
    The infinite-U three-band Hubbard model is considered in order to describe the CuO_2 planes of the high temperature superconducting cuprates. The charge instabilities are investigated when the model is extended with a nearest-neighbor repulsion between holes on copper d and oxygen p orbitals and in the presence of a long-range Coulombic repulsion. It is found that a first-order valence instability line ending with a critical point is present like in the previously investigated model without long-range forces. However, the dominant critical instability is the formation of incommensurate charge-density-waves, which always occur before the valence-instability critical point is reached. An effective singular attraction arises in the proximity of the charge-density wave instability, accounting for both a strong pairing mechanism and for the anomalous normal state properties.Comment: 15 pages in RevteX. Figures available from M. Grill

    Single-particle properties of a model for coexisting charge and spin quasi-critical fluctuations coupled to electrons

    Full text link
    We study the single-particle spectral properties of a model for coexisting AFM and ICDW critical fluctuations coupled to electrons, which naturally arises in the context of the stripe-quantum-critical-point scenario for high-Tc superconducting materials. Within a perturbative approach, we show that the on-shell inverse scattering time deviates from the normal Fermi-liquid behavior near the points of the Fermi surface connected by the characteristic wave-vectors of the critical fluctuations (hot spots). The anomalous behavior is stronger when the hot spots are located near singular points of the electronic spectrum. The violations to the normal Fermi-liquid behavior are associated with the transfer of spectral weight from the quasi-particle peak to incoherent shadow peaks, which produces an enhancement of incoherent spectral weight near the Fermi level. We use our results to discuss recent ARPES experiments on Bi2212 near optimal doping

    Phase separation in the 2D Hubbard model: a fixed-node quantum Monte Carlo study

    Full text link
    Fixed-node Green's function Monte Carlo calculations have been performed for very large 16x6 2D Hubbard lattices, large interaction strengths U=10,20, and 40, and many (15-20) densities between empty and half filling. The nodes were fixed by a simple Slater-Gutzwiller trial wavefunction. For each value of U we obtained a sequence of ground-state energies which is consistent with the possibility of a phase separation close to half-filling, with a hole density in the hole-rich phase which is a decreasing function of U. The energies suffer, however, from a fixed-node bias: more accurate nodes are needed to confirm this picture. Our extensive numerical results and their test against size, shell, shape and boundary condition effects also suggest that phase separation is quite a delicate issue, on which simulations based on smaller lattices than considered here are unlikely to give reliable predictions.Comment: 4 pages, 1 figure; revised version, more data point

    Eliashberg-type equations for correlated superconductors

    Full text link
    The derivation of the Eliashberg -- type equations for a superconductor with strong correlations and electron--phonon interaction has been presented. The proper account of short range Coulomb interactions results in a strongly anisotropic equations. Possible symmetries of the order parameter include s, p and d wave. We found the carrier concentration dependence of the coupling constants corresponding to these symmetries. At low hole doping the d-wave component is the largest one.Comment: RevTeX, 18 pages, 5 ps figures added at the end of source file, to be published in Phys.Rev. B, contact: [email protected]

    d-wave superconductivity near charge instabilities

    Full text link
    We investigate the symmetry of the superconducting order parameter in the proximity of a phase-separation or of an incommensurate charge-density-wave instability. The attractive effective interaction at small or intermediate transferred momenta is singular near the instability. This strongly qq-dependent interaction, together with a residual local repulsion between the quasiparticles and an enhanced density of states for band structures appropriate for the high temperature superconducting oxides, strongly favors the formation of dd-wave superconductivity. The relative stability with respect to superconductivity in the ss-wave channel is discussed in detail, finding this latter hardly realized in the above conditions. The superconducting temperature is mostly determined by the closeness to the quantum critical point associated to the charge instability and displays a stronger dependence on doping with respect to the simple proximity to a Van Hove singularity. The relevance of this scenario and the generic agreement of the resulting phase diagram with the properties displayed by high temperature superconducting oxides is discussed.Comment: 1 revtex file and 12 postscript figure
    • …
    corecore