717 research outputs found

    Learning Exact Topology of a Loopy Power Grid from Ambient Dynamics

    Full text link
    Estimation of the operational topology of the power grid is necessary for optimal market settlement and reliable dynamic operation of the grid. This paper presents a novel framework for topology estimation for general power grids (loopy or radial) using time-series measurements of nodal voltage phase angles that arise from the swing dynamics. Our learning framework utilizes multivariate Wiener filtering to unravel the interaction between fluctuations in voltage angles at different nodes and identifies operational edges by considering the phase response of the elements of the multivariate Wiener filter. The performance of our learning framework is demonstrated through simulations on standard IEEE test cases.Comment: accepted as a short paper in ACM eEnergy 2017, Hong Kon

    Interaction-induced chaos in a two-electron quantum-dot system

    Full text link
    A quasi-one-dimensional quantum dot containing two interacting electrons is analyzed in search of signatures of chaos. The two-electron energy spectrum is obtained by diagonalization of the Hamiltonian including the exact Coulomb interaction. We find that the level-spacing fluctuations follow closely a Wigner-Dyson distribution, which indicates the emergence of quantum signatures of chaos due to the Coulomb interaction in an otherwise non-chaotic system. In general, the Poincar\'e maps of a classical analog of this quantum mechanical problem can exhibit a mixed classical dynamics. However, for the range of energies involved in the present system, the dynamics is strongly chaotic, aside from small regular regions. The system we study models a realistic semiconductor nanostructure, with electronic parameters typical of gallium arsenide.Comment: 4 pages, 3ps figure

    Quantum Transport in a Nanosize Silicon-on-Insulator Metal-Oxide-Semiconductor

    Full text link
    An approach is developed for the determination of the current flowing through a nanosize silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFET). The quantum mechanical features of the electron transport are extracted from the numerical solution of the quantum Liouville equation in the Wigner function representation. Accounting for electron scattering due to ionized impurities, acoustic phonons and surface roughness at the Si/SiO2 interface, device characteristics are obtained as a function of a channel length. From the Wigner function distributions, the coexistence of the diffusive and the ballistic transport naturally emerges. It is shown that the scattering mechanisms tend to reduce the ballistic component of the transport. The ballistic component increases with decreasing the channel length.Comment: 21 pages, 8 figures, E-mail addresses: [email protected]

    Phonon Driven Nonlinear Electrical Behavior in Molecular Devices

    Full text link
    Electronic transport in a model molecular device coupled to local phonon modes is theoretically analyzed. The method allows for obtaining an accurate approximation of the system's quantum state irrespective of the electron and phonon energy scales. Nonlinear electrical features emerge from the calculated current-voltage characteristics. The quantum corrections with respect to the adiabatic limit characterize the transport scenario, and the polaronic reduction of the effective device-lead coupling plays a fundamental role in the unusual electrical features.Comment: 14 pages, 4 figure

    Thermoelectric properties of the bismuth telluride nanowires in the constant-relaxation-time approximation

    Full text link
    Electronic structure of bismuth telluride nanowires with the growth directions [110] and [015] is studied in the framework of anisotropic effective mass method using the parabolic band approximation. The components of the electron and hole effective mass tensor for six valleys are calculated for both growth directions. For a square nanowire, in the temperature range from 77 K to 500 K, the dependence of the Seebeck coefficient, the electron thermal and electrical conductivity as well as the figure of merit ZT on the nanowire thickness and on the excess hole concentration are investigated in the constant-relaxation-time approximation. The carrier confinement is shown to play essential role for square nanowires with thickness less than 30 nm. The confinement decreases both the carrier concentration and the thermal conductivity but increases the maximum value of Seebeck coefficient in contrast to the excess holes (impurities). The confinement effect is stronger for the direction [015] than for the direction [110] due to the carrier mass difference for these directions. The carrier confinement increases maximum value of ZT and shifts it towards high temperatures. For the p-type bismuth telluride nanowires with growth direction [110], the maximum value of the figure of merit is equal to 1.3, 1.6, and 2.8, correspondingly, at temperatures 310 K, 390 K, 480 K and the nanowire thicknesses 30 nm, 15 nm, and 7 nm. At the room temperature, the figure of merit equals 1.2, 1.3, and 1.7, respectively.Comment: 13 pages, 7 figures, 2 tables, typos added, added references for sections 2-

    Resonant tunnelling features in the transport spectroscopy of quantum dots

    Full text link
    We present a review of features due to resonant tunnelling in transport spectroscopy experiments on quantum dots and single donors. The review covers features attributable to intrinsic properties of the dot as well as extrinsic effects, with a focus on the most common operating conditions. We describe several phenomena that can lead to apparently identical signatures in a bias spectroscopy measurement, with the aim of providing experimental methods to distinguish between their different physical origins. The correct classification of the resonant tunnelling features is an essential requirement to understand the details of the confining potential or predict the performance of the dot for quantum information processing.Comment: 18 pages, 7 figures. Short review article submitted to Nanotechnology, special issue on 'Quantum Science and Technology at the Nanoscale

    Neural gain control measured through cortical gamma oscillations is associated with sensory sensitivity

    Get PDF
    Gamma oscillations facilitate information processing by shaping the excitatory input/output of neuronal populations. Recent studies in humans and nonhuman primates have shown that strong excitatory drive to the visual cortex leads to suppression of induced gamma oscillations, which may reflect inhibitory-based gain control of network excitation. The efficiency of the gain control measured through gamma oscillations may in turn affect sensory sensitivity in everyday life. To test this prediction, we assessed the link between self-reported sensitivity and changes in magneto-encephalographic gamma oscillations as a function of motion velocity of high-contrast visual gratings. The induced gamma oscillations increased in frequency and decreased in power with increasing stimulation intensity. As expected, weaker suppression of the gamma response correlated with sensory hypersensitivity. Robustness of this result was confirmed by its replication in the two samples: neurotypical subjects and people with autism, who had generally elevated sensory sensitivity. We conclude that intensity-related suppression of gamma response is a promising biomarker of homeostatic control of the excitation-inhibition balance in the visual cortex

    Natural Flavour Conservation in a three Higg-doublet Model

    Full text link
    We consider an extension of the standard model (SM) with three SU(2)SU(2) scalar doublets and a discrete S3⊗Z2S_3\otimes \mathbb{Z}_2 symmetries. The irreducible representation of S3S_3 has a singlet and a doublet, and here we show that the singlet corresponds to the SM-like Higgs and the two additional SU(2)SU(2) doublets forming a S3S_3 doublet are inert. In general, in a three scalar doublet model, with or without S3S_3 symmetry, the diagonalization of the mass matrices implies arbitrary unitary matrices. However, we show that in our model these matrices are of the tri-bimaximal type. We also analyzed the scalar mass spectra and the conditions for the scalar potential is bounded from below at the tree level. We also discuss some phenomenological consequences of the model.Comment: Published version. The title has been changed in the journal: A model with two inert scalar doublet
    • …
    corecore