204 research outputs found
Feedback control of unstable cellular solidification fronts
We present a numerical and experimental study of feedback control of unstable
cellular patterns in directional solidification (DS). The sample, a dilute
binary alloy, solidifies in a 2D geometry under a control scheme which applies
local heating close to the cell tips which protrude ahead of the other. For the
experiments, we use a real-time image processing algorithm to track cell tips,
coupled with a movable laser spot array device, to heat locally. We show,
numerically and experimentally, that spacings well below the threshold for a
period-doubling instability can be stabilized. As predicted by the numerical
calculations, cellular arrays become stable, and the spacing becomes uniform
through feedback control which is maintained with minimal heating.Comment: 4 pages, 4 figures, 1 tabl
Shear band dynamics from a mesoscopic modeling of plasticity
The ubiquitous appearance of regions of localized deformation (shear bands)
in different kinds of disordered materials under shear is studied in the
context of a mesoscopic model of plasticity. The model may or may not include
relaxational (aging) effects. In the absence of relaxational effects the model
displays a monotonously increasing dependence of stress on strain-rate, and
stationary shear bands do not occur. However, in start up experiments transient
(although long lived) shear bands occur, that widen without bound in time. I
investigate this transient effect in detail, reproducing and explaining a t^1/2
law for the thickness increase of the shear band that has been obtained in
atomistic numerical simulations. Relaxation produces a negative sloped region
in the stress vs. strain-rate curve that stabilizes the formation of shear
bands of a well defined width, which is a function of strain-rate. Simulations
at very low strain-rates reveal a non-trivial stick-slip dynamics of very thin
shear bands that has relevance in the study of seismic phenomena. In addition,
other non-stationary processes, such as stop-and-go, or strain-rate inversion
situations display a phenomenology that matches very well the results of recent
experimental studies.Comment: 10 pages, 10 figure
Non-Gaussian velocity distributions in excited granular matter in the absence of clustering
The velocity distribution of spheres rolling on a slightly tilted rectangular
two dimensional surface is obtained by high speed imaging. The particles are
excited by periodic forcing of one of the side walls. Our data suggests that
strongly non-Gaussian velocity distributions can occur in dilute granular
materials even in the absence of significant density correlations or
clustering. When the surface on which the particles roll is tilted further to
introduce stronger gravitation, the collision frequency with the driving wall
increases and the velocity component distributions approach Gaussian
distributions of different widths.Comment: 4 pages, 5 figures. Additional information at
http://physics.clarku.edu/~akudrolli/nls.htm
Breakdown of Energy Equipartition in a 2D Binary Vibrated Granular Gas
We report experiments on the equipartition of kinetic energy between grains
made of two different materials in a mixture of grains vibrated in 2
dimensions. In general, the two types of grains do not attain the same granular
temperature, Tg = 1/2m v^2. However, the ratio of the two temperatures is
constant in the bulk of the system and independent of the vibration velocity.
The ratio depends strongly on the ratio of mass densities of the grains, but is
not sensitive to the inelasticity of grains. Also, this ratio is insensitive to
compositional variables of the mixture such as the number fraction of each
component and the total number density. We conclude that a single granular
temperature, as traditionally defined, does not characterize a multi-component
mixture.Comment: 4 pages, 5 figures, submitted to Physical Review Letters, updated
reference
Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic and smectic correlations
We study experimentally the nonequilibrium phase behaviour of a horizontal
monolayer of macroscopic rods. The motion of the rods in two dimensions is
driven by vibrations in the vertical direction. Aside from the control
variables of packing fraction and aspect ratio that are typically explored in
molecular liquid crystalline systems, due to the macroscopic size of the
particles we are also able to investigate the effect of the precise shape of
the particle on the steady states of this driven system. We find that the shape
plays an important role in determining the nature of the orientational ordering
at high packing fraction. Cylindrical particles show substantial tetratic
correlations over a range of aspect ratios where spherocylinders have
previously been shown by Bates et al (JCP 112, 10034 (2000)) to undergo
transitions between isotropic and nematic phases. Particles that are thinner at
the ends (rolling pins or bails) show nematic ordering over the same range of
aspect ratios, with a well-established nematic phase at large aspect ratio and
a defect-ridden nematic state with large-scale swirling motion at small aspect
ratios. Finally, long-grain, basmati rice, whose geometry is intermediate
between the two shapes above, shows phases with strong indications of smectic
order.Comment: 18 pages and 13 eps figures, references adde
Fluctuation-Dissipation relations in Driven Granular Gases
We study the dynamics of a 2d driven inelastic gas, by means of Direct
Simulation Monte Carlo (DSMC) techniques, i.e. under the assumption of
Molecular Chaos. Under the effect of a uniform stochastic driving in the form
of a white noise plus a friction term, the gas is kept in a non-equilibrium
Steady State characterized by fractal density correlations and non-Gaussian
distributions of velocities; the mean squared velocity, that is the so-called
{\em granular temperature}, is lower than the bath temperature. We observe that
a modified form of the Kubo relation, which relates the autocorrelation and the
linear response for the dynamics of a system {\em at equilibrium}, still holds
for the off-equilibrium, though stationary, dynamics of the systems under
investigation. Interestingly, the only needed modification to the equilibrium
Kubo relation is the replacement of the equilibrium temperature with an
effective temperature, which results equal to the global granular temperature.
We present two independent numerical experiment, i.e. two different observables
are studied: (a) the staggered density current, whose response to an impulsive
shear is proportional to its autocorrelation in the unperturbed system and (b)
the response of a tracer to a small constant force, switched on at time ,
which is proportional to the mean-square displacement in the unperturbed
system. Both measures confirm the validity of Kubo's formula, provided that the
granular temperature is used as the proportionality factor between response and
autocorrelation, at least for not too large inelasticities.Comment: 11 pages, 7 figures, submitted for publicatio
RefCell: multi-dimensional analysis of image-based high-throughput screens based on ‘typical cells’
Image-based high-throughput screening (HTS) reveals a high level of heterogeneity in single cells and multiple cellular states may be observed within a single population. Currently available high-dimensional analysis methods are successful in characterizing cellular heterogeneity, but suffer from the “curse of dimensionality” and non-standardized outputs. Here we introduce RefCell, a multi-dimensional analysis pipeline for image-based HTS that reproducibly captures cells with typical combinations of features in reference states and uses these “typical cells” as a reference for classification and weighting of metrics. RefCell quantitatively assesses heterogeneous deviations from typical behavior for each analyzed perturbation or sample. We apply RefCell to the analysis of data from a high-throughput imaging screen of a library of 320 ubiquitin-targeted siRNAs selected to gain insights into the mechanisms of premature aging (progeria). RefCell yields results comparable to a more complex clustering-based single-cell analysis method; both methods reveal more potential hits than a conventional analysis based on averages.https://doi.org/10.1186/s12859-018-2454-
Self-diffusion in dense granular shear flows
Diffusivity is a key quantity in describing velocity fluctuations in granular
materials. These fluctuations are the basis of many thermodynamic and
hydrodynamic models which aim to provide a statistical description of granular
systems. We present experimental results on diffusivity in dense, granular
shear in a 2D Couette geometry. We find that self-diffusivities are
proportional to the local shear rate with diffusivities along the mean flow
approximately twice as large as those in the perpendicular direction. The
magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the
particle radius. However, the gradient in shear rate, coupling to the mean
flow, and drag at the moving boundary lead to particle displacements that can
appear sub- or super-diffusive. In particular, diffusion appears superdiffusive
along the mean flow direction due to Taylor dispersion effects and subdiffusive
along the perpendicular direction due to the gradient in shear rate. The
anisotropic force network leads to an additional anisotropy in the diffusivity
that is a property of dense systems with no obvious analog in rapid flows.
Specifically, the diffusivity is supressed along the direction of the strong
force network. A simple random walk simulation reproduces the key features of
the data, such as the apparent superdiffusive and subdiffusive behavior arising
from the mean flow, confirming the underlying diffusive motion. The additional
anisotropy is not observed in the simulation since the strong force network is
not included. Examples of correlated motion, such as transient vortices, and
Levy flights are also observed. Although correlated motion creates velocity
fields qualitatively different from Brownian motion and can introduce
non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E
Studies of Mass and Size Effects in Three-Dimensional Vibrofluidized Granular Mixtures
We examine the steady state properties of binary systems of driven inelastic
hard spheres. The spheres, which move under the influence of gravity, are
contained in a vertical cylinder with a vibrating base. We computed the
trajectories of the spheres using an event-driven molecular dynamics algorithm.
In the first part of the study, we chose simulation parameters that match those
of experiments performed by Wildman and Parker. Various properties computed
from the simulation including the density profile, granular temperature and
circulation pattern are in good qualitative agreement with the experiments. We
then studied the effect of varying the mass ratio and the size ratio
independently while holding the other parameters constant. The mass and size
ratio are shown to affect the distribution of the energy. The changes in the
energy distributions affect the packing fraction and temperature of each
component. The temperature of the heavier component has a non-linear dependence
on the mass of the lighter component, while the temperature of the lighter
component is approximately proportional to its mass. The temperature of both
components is inversely dependent on the size of the smaller component.Comment: 14 Pages, 12 Figures, RevTeX
- …