1,547 research outputs found

    T-duality and Generalized Kahler Geometry

    Full text link
    We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-strengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.Comment: 14 pages; published version: some conventions improved, minor clarification

    Topological A-Type Models with Flux

    Full text link
    We study deformations of the A-model in the presence of fluxes, by which we mean rank-three tensors with antisymmetrized upper/lower indices, using the AKSZ construction. Generically these are topological membrane models, and we show that the fluxes are related to deformations of the Courant bracket which generalize the twist by a closed 3-from HH, in the sense that satisfying the AKSZ master equation implies the integrability conditions for an almost generalized complex structure with respect to the deformed Courant bracket. In addition, the master equation imposes conditions on the fluxes that generalize dH=0dH=0. The membrane model can be defined on a large class of U(m)U(m)- and U(m)×U(m)U(m) \times U(m)-structure manifolds, including geometries inspired by (1,1)(1,1) supersymmetric σ\sigma-models with additional supersymmetries due to almost complex (but not necessarily complex) structures in the target space. Furthermore, we show that the model can be defined on three particular half-flat manifolds related to the Iwasawa manifold. When only HH-flux is turned on it is possible to obtain a topological string model, which we do for the case of a Calabi-Yau with a closed 3-form turned on. The simplest deformation from the A-model is due to the (2,0)+(0,2)(2,0)+ (0,2) component of a non-trivial bb-field. The model is generically no longer evaluated on holomorphic maps and defines new topological invariants. Deformations due to HH-flux can be more radical, completely preventing auxiliary fields from being integrated out.Comment: 30 pages. v2: Improved Version. References added. v3: Minor changes, published in JHE

    Scattering of Fermions off Dilaton Black Holes

    Full text link
    We discuss how various properties of dilaton black holes depend on the dilaton coupling constant aa. In particular we investigate the aa-dependence of certain mass parameters both outside and in the extremal limit and discuss their relation to thermodynamical quantities. To further illuminate the role of the coupling constant aa we look at a massless point particle in a dilaton black hole geometry as well as the scattering of (neutral) fermions. In this latter case we find that the scattering potential vanishes for the zero angular momentum mode which seems to indicate a catastrophic deradiation when a>1a>1.Comment: 12, Oslo-TP-4-94, USITP-94-

    Effects of quasiparticle tunneling in a circuit-QED realization of a strongly driven two-level system

    Full text link
    We experimentally and theoretically study the frequency shift of a driven cavity coupled to a superconducting charge qubit. In addition to previous studies, we here also consider drive strengths large enough to energetically allow for quasiparticle creation. Quasiparticle tunneling leads to the inclusion of more than two charge states in the dynamics. To explain the observed effects, we develop a master equation for the microwave dressed charge states, including quasiparticle tunneling. A bimodal behavior of the frequency shift as a function of gate voltage can be used for sensitive charge detection. However, at weak drives the charge sensitivity is significantly reduced by non-equilibrium quasiparticles, which induce transitions to a non-sensitive state. Unexpectedly, at high enough drives, quasiparticle tunneling enables a very fast relaxation channel to the sensitive state. In this regime, the charge sensitivity is thus robust against externally injected quasiparticles and the desired dynamics prevail over a broad range of temperatures. We find very good agreement between theory and experiment over a wide range of drive strengths and temperatures.Comment: 25 pages, 7 figure

    NS-NS fluxes in Hitchin's generalized geometry

    Get PDF
    The standard notion of NS-NS 3-form flux is lifted to Hitchin's generalized geometry. This generalized flux is given in terms of an integral of a modified Nijenhuis operator over a generalized 3-cycle. Explicitly evaluating the generalized flux in a number of familiar examples, we show that it can compute three-form flux, geometric flux and non-geometric Q-flux. Finally, a generalized connection that acts on generalized vectors is described and we show how the flux arises from it.Comment: 21 pages, 1 figure; v3: minor change

    Near-Field Scanning Microwave Microscopy in the Single Photon Regime

    Get PDF
    The microwave properties of nano-scale structures are important in a wide variety of applications in quantum technology. Here we describe a low-power cryogenic near-field scanning microwave microscope (NSMM) which maintains nano-scale dielectric contrast down to the single microwave photon regime, up to 10910^{9} times lower power than in typical NSMMs. We discuss the remaining challenges towards developing nano-scale NSMM for quantum coherent interaction with two-level systems as an enabling tool for the development of quantum technologies in the microwave regime

    "I see myself": Craving imagery among individuals with addictive disorders.

    Get PDF
    Craving has been put forward as a core feature of addictive disorders. The present qualitative study investigated the experience of craving among individuals with addictive disorders and recent experiences of cravings. Eleven individuals with Gambling Disorder and ten with Alcohol Use Disorder (n = 21) were recruited. A semi-structured interview explored: (1) modes of thought during craving (mental imagery or verbal thoughts), (2) craving content, (3) coping strategies and (4) craving context. The thematic analysis showed that cravings were initially dominated by imagery, with a subsequent conflict between imagery and verbal thoughts. Craving content included imagery of preparative rituals, anticipation, and sensory activation, imagery of the addictive behavior "me, there and then imagery" and anticipating that "something good will come out of it." Some participants related to craving as a symptom of sickness, and coping with craving were through distraction, reminding oneself of negative consequences, or via sensory control: avoiding stimuli associated with the addiction. Craving contexts included typical settings of drinking or gambling and engagement of both positive and negative emotions. Alcohol craving was described as an expected relief from internal stimuli, such as anxiety or stress, whereas gambling craving was more often described as an expectancy of financial reward. Craving was experienced mainly through imagery containing the preparative routines and expected outcomes. Future research and clinical practice should incorporate mode of thought in cravings to better understand its role in the maintenance of the disorders and their treatment

    An Alternative Topological Field Theory of Generalized Complex Geometry

    Full text link
    We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is AA model in the case that the generalized complex structuredepends on only a symplectic structure. Our new model is BB model in the case that the generalized complex structure depends on only a complex structure.Comment: 29 pages, typos and references correcte

    Dynamic parity recovery in a strongly driven Cooper-pair box

    Get PDF
    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stuckelberg (LZS) interference structure of a longitudinally driven two-level system. For even stronger drives we observe a significant change in the LZS pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.Comment: 5 pages, 4 figure
    corecore