6 research outputs found

    Mining for normal galaxies in the First XMM-Newton Serendipitous Source Catalog

    Full text link
    This paper uses the 1st XMM Serendipitous Source Catalog compiled by the XMM Science Center to identify low-z X-ray selected normal galaxy candidates. Our sample covers a total area of ~6deg^2 to the 0.5-2keV limit 1e-15cgs. A total of 23 sources are selected on the basis of low X-ray-to-optical flux ratio logfx/fopt<-2, soft X-ray spectral properties and optical spectra, when available, consistent with stellar than AGN processes. This sample is combined with similarly selected systems from the Needles in the Haystack Survey (Georgantopoulos et al. 2005) to provide a total of 46 z<0.2 X-ray detected normal galaxies, the largest low-z sample yet available. This is first used to constrain the normal galaxy logN-logS at bright fluxes (>1e-15cgs). We estimate a slope of -1.46\pm0.13 for the cumulative number counts consistent with the euclidean prediction. We further combine our sample with 23 local (z<0.2) galaxies from the CDF North and South to construct the local X-ray luminosity function of normal galaxies. A Schechter form provides a good fit to the data with a break at logL*~41.02cgs and a slope of -1.76\pm0.10. Finally, for the sample of 46 systems we explore the association between X-ray luminosity and host galaxy properties, such as SFR and stellar mass. We find that the L_X of the emission-line systems correlates with Ha luminosity and 1.4GHz radio power, both providing an estimate of the current star-formation rate. In the case of early type galaxies with absorption line optical spectra we use the K-band as proxy to stellar mass and find a correlation of the form L_X~L_K^1.5. This is flatter than the L_X-L_B relation for local ellipticals. This may be due to either L_K providing a better proxy to galaxy mass or selection effects biasing our sample against very luminous early-type galaxies.Comment: Accepted for publication in MNRA

    Deep optical study of the mixed-morphology supernova remnant G 132.7+1.3 (HB3)

    Get PDF
    We present optical CCD images of the large supernova remnant (SNR) G 132.7+1.3 (HB3) covering its full extent for the first time, in the emission lines of Hα +[N II], [S II], and [O III], where new and known filamentary and diffuse structures are detected. These observations are supplemented by new low-resolution long-slit spectra and higher resolution images in the same emission lines. Both the flux-calibrated images and spectra confirm that the optical emission originates from shock-heated gas since the [S II]/Hα > 0.4. Our findings are also consistent with the recently developed emission-line ratio diagnostics for distinguishing SNRs from H II regions. A multiwavelength comparison among our optical data and relevant observations in radio, X-rays, gamma-rays and CO bands, provided additional evidence on the interaction of HB3 with the surrounding clouds and clarified the borders of the SNR and the adjacent cloud. We discuss the supernova (SN) properties and evolution that led to the current observables of HB3 and we show that the remnant has most likely passed at the pressure driven snowplow phase. The estimated SN energy was found to be (3.7 ± 1.5) × 1051 erg and the current SNR age (5.1 ± 2.1) × 104 yr. We present an alternative scenario according to which the SNR evolved in the wind bubble cavity excavated by the progenitor star and currently is interacting with its density walls. We show that the overall mixed morphology properties of HB3 can be explained if the SN resulted by a Wolf−Rayet progenitor star with mass ∼34 M⊙⁠

    Patient experiences of psychological therapy for depression: a qualitative metasynthesis

    Get PDF
    Background Globally, national guidelines for depression have prioritised evidence from randomised controlled trials and quantitative meta-analyses, omitting qualitative research concerning patient experience of treatments. A review of patient experience research can provide a comprehensive overview of this important form of evidence and thus enable the voices and subjectivities of those affected by depression to have an impact on the treatments and services they are offered. This review aims to seek a comprehensive understanding of patient experiences of psychological therapies for depression using a systematic and rigorous approach to review and synthesis of qualitative research. Method PsychINFO, PsychARTICLES, MEDLINE, and CINAHL were searched for published articles using a qualitative approach to examine experiences of psychological therapies for depression. All types of psychological therapy were included irrespective of model or modes of delivery (e.g. remote or in person; group or individual). Each article was assessed following guidance provided by the Critical Appraisal Skill Programme tool. Articles were entered in full into NVIVO and themes were extracted and synthesized following inductive thematic analysis. Results Thirty-seven studies, representing 671 patients were included. Three main themes are described; the role of therapy features and setting; therapy processes and how they impact on outcomes; and therapy outcomes (benefits and limitations). Subthemes are described within these themes and include discussion of what works and what’s unhelpful; issues integrating therapy with real life; patient preferences and individual difference; challenges of undertaking therapy; influence of the therapist; benefits of therapy; limits of therapy and what happens when therapy ends. Conclusions Findings point to the importance of common factors in psychotherapies; highlight the need to assess negative outcomes; and indicate the need for patients to be more involved in discussions and decisions about therapy, including tailoring therapy to individual needs and taking social and cultural contexts into account

    Deep optical study of the mixed-morphology supernova remnant G 132.7+1.3 (HB3)

    No full text
    We present optical CCD images of the large supernova remnant (SNR) G 132.7+1.3 (HB3) covering its full extent for the first time, in the emission lines of Hα +[N ii], [S ii], and [O iii], where new and known filamentary and diffuse structures are detected. These observations are supplemented by new low-resolution long-slit spectra and higher resolution images in the same emission lines. Both the flux-calibrated images and spectra confirm that the optical emission originates from shock-heated gas since the [S ii]/Hα &gt; 0.4. Our findings are also consistent with the recently developed emission-line ratio diagnostics for distinguishing SNRs from H ii regions. A multiwavelength comparison among our optical data and relevant observations in radio, X-rays, gamma-rays and CO bands, provided additional evidence on the interaction of HB3 with the surrounding clouds and clarified the borders of the SNR and the adjacent cloud. We discuss the supernova (SN) properties and evolution that led to the current observables of HB3 and we show that the remnant has most likely passed at the pressure driven snowplow phase. The estimated SN energy was found to be (3.7 ± 1.5) × 1051 erg and the current SNR age (5.1 ± 2.1) × 104 yr. We present an alternative scenario according to which the SNR evolved in the wind bubble cavity excavated by the progenitor star and currently is interacting with its density walls. We show that the overall mixed morphology properties of HB3 can be explained if the SN resulted by a Wolf-Rayet progenitor star with mass ∼34\rm ∼M. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society
    corecore