4,823 research outputs found

    "Gray" BCS condensate of excitons and internal Josephson effect

    Full text link
    It has been recently suggested that the Bose-Einstein condensate formed by excitons in the dilute limit must be dark, i.e., not coupled to photons. Here, we show that, under a density increase, the dark exciton condensate must acquire a bright component due to carrier exchange in which dark excitons turn bright. This however requires a density larger than a threshold which seems to fall in the forbidden region of the phase separation between a dilute exciton gas and a dense electron-hole plasma. The BCS-like condensation which is likely to take place on the dense side, must then have a dark and a bright component - which makes it "gray". It should be possible to induce an internal Josephson effect between these two coherent components, with oscillations of the photoluminescence as a strong proof of the existence for this "gray" BCS-like exciton condensate.Comment: 4 pages, typo correcte

    On Koopman-von Neumann Waves II

    Full text link
    In this paper we continue the study, started in [1], of the operatorial formulation of classical mechanics given by Koopman and von Neumann (KvN) in the Thirties. In particular we show that the introduction of the KvN Hilbert space of complex and square integrable "wave functions" requires an enlargement of the set of the observables of ordinary classical mechanics. The possible role and the meaning of these extra observables is briefly indicated in this work. We also analyze the similarities and differences between non selective measurements and two-slit experiments in classical and quantum mechanics.Comment: 18+1 pages, 1 figure, misprints fixe

    Topological stripelike coreless textures with inner incommensurability in two-dimensional Heisenberg antiferromagnet

    Full text link
    For two-dimensional Heisenberg antiferromagnet we present an analysis of topological coreless excitations having a stripe form. These textures are characterized by singularities at boundaries. A detailed classification of the stripe textures results in a certain analogy with the coreless excitations in 3HeA^3He-A phase: Mermin-Ho and Anderson-Toulouse coreless vortices. The excitations of the last type may have a low bulk energy. The stripe textures may be observed as an occurrence of short-range incommensurate order in the antiferromagnetic environment

    Collective oscillations of a Fermi gas near a Feshbach resonance

    Full text link
    A sum rule approach is used to calculate the zero temperature oscillation frequencies of a two component trapped atomic Fermi gas in the BCS-Bose Einstein condensation crossover region. These sum rules are evaluated using a local density approximation which explicitly includes Feshbach molecules. Breathing modes show non-monotonic behavior as a function of the interaction strength, while quadrupole modes are insensitive to interactions for both spherically symmetric and axially symmetric traps. Quantitative agreement is found with experiments on atomic 6Li^6Li system and with other theoretical approaches.Comment: 7 pages, 4 figure

    Fermi-Fermi Mixtures in the Strong Attraction Limit

    Full text link
    The phase diagrams of low density Fermi-Fermi mixtures with equal or unequal masses and equal or unequal populations are described at zero and finite temperatures in the strong attraction limit. In this limit, the Fermi-Fermi mixture can be described by a weakly interacting Bose-Fermi mixture, where the bosons correspond to Feshbach molecules and the fermions correspond to excess atoms. First, we discuss the three and four fermion scattering processes, and use the exact boson-fermion and boson-boson scattering lengths to generate the phase diagrams in terms of the underlying fermion-fermion scattering length. In three dimensions, in addition to the normal and uniform superfluid phases, we find two stable non-uniform states corresponding to (1) phase separation between pure unpaired (excess) and pure paired fermions (molecular bosons); and (2) phase separation between pure excess fermions and a mixture of excess fermions and molecular bosons. Lastly, we also discuss the effects of the trapping potential in the density profiles of condensed and non-condensed molecular bosons, and excess fermions at zero and finite temperatures, and discuss possible implications of our findings to experiments involving mixtures of ultracold fermions.Comment: 12 Pages, 6 Figures and 1 Tabl

    Calculation of NMR Properties of Solitons in Superfluid 3He-A

    Full text link
    Superfluid 3He-A has domain-wall-like structures, which are called solitons. We calculate numerically the structure of a splay soliton. We study the effect of solitons on the nuclear-magnetic-resonance spectrum by calculating the frequency shifts and the amplitudes of the soliton peaks for both longitudinal and transverse oscillations of magnetization. The effect of dissipation caused by normal-superfluid conversion and spin diffusion is calculated. The calculations are in good agreement with experiments, except a problem in the transverse resonance frequency of the splay soliton or in magnetic-field dependence of reduced resonance frequencies.Comment: 15 pages, 10 figures, updated to the published versio

    Bound states in a quasi-two-dimensional Fermi gas

    Get PDF
    We consider the problem of N identical fermions of mass M and one distinguishable particle of mass m interacting via short-range interactions in a confined quasi-two-dimensional (quasi-2D) geometry. For N=2 and mass ratios M/m<13.6, we find non-Efimov trimers that smoothly evolve from 2D to 3D. In the limit of strong 2D confinement, we show that the energy of the N+1 system can be approximated by an effective two-channel model. We use this approximation to solve the 3+1 problem and we find that a bound tetramer can exist for mass ratios M/m as low as 5 for strong confinement, thus providing the first example of a universal, non-Efimov tetramer involving three identical fermions.Comment: 5 pages, 4 figure

    Surface Energy in Cold Asymmetrical Fermion Superfluids

    Full text link
    We derive the energy of the surface between the normal and superfluid components of a mixed phase of a system composed of two particle species with different densities. The surface energy is obtained by the integration of the free energy density in the interface between the two phases. We show that the mixed phase remains as the favored ground state over the gapless phase in weak coupling. We find that the surface energy effects emerge only at strong coupling.Comment: 12 pages, 2 figures, typos corrected, published versio
    corecore