136 research outputs found

    Bioinformatics tools for the discovery of new lipopeptides with biocontrol applications

    Full text link
    As conventional or chemical pesticides have negative impact on environment and health of both farmer and consumers, it becomes relevant to develop alternative solutions to limit their use. In this context, innovative strategies to accelerate the development of biocontrol agents are welcome. For a decade of years, it has been demonstrated that lipopeptides are very efficient weapons against fungi responsible for crop diseases. Lipopeptides are secondary metabolites, produced by many microorganisms including beneficial rhizobacteria. The lipopeptide biosynthetic pathways include nonribosomal peptide synthetases. These modular enzymatic complexes work as assembly lines to build the peptides step by step, leading to the production of original peptide compounds with specific features as the presence of non proteinogenic monomers and cyclic and branched structures. In this paper, Florine and Norine bioinformatics tools, especially dedicated to non-ribosomal synthetases and their products are presented. Their use is mainly focused on the discovery of lipopeptides produced by Bacillus or Pseudomonas because they seem to represent a versatile reservoir of active secondary metabolites with promising activities for applications in phytosanitary area. © 2018, Koninklijke Nederlandse Planteziektenkundige Vereniging.Peer reviewe

    Direct formulation of the supersonic acoustic intensity in space domain

    Get PDF
    International audienceThis paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated into the far field. To date, its calculation has been formulated in the wave number domain, filtering out the evanescent waves outside the radiation circle and reconstructing the acoustic field with only the propagating waves. In this study, the supersonic intensity is calculated directly in space domain by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain. This paper presents the theory, as well as a numerical example to illustrate some fundamental principles. An experimental study on planar radiators was conducted to verify the validity of the technique. The experimental results are presented, and serve to illustrate the usefulness of the analysis, its strengths and limitations

    Lipopeptide biodiversity in antifungal Bacillus strains isolated from Algeria

    Full text link
    Several Bacillus strains have been well studied for their ability to control soil-borne plant diseases. This property is linked to the production of several families of lipopeptides. Depending of their structure, these compounds show antifungal and/or plant systemic resistance inducing activities. In this work, the biodiversity of lipopeptides produced by different antifungal Bacillus strains isolated from seeds, rhizospheric, and non-rhizospheric soils in Algeria was analyzed. Sixteen active strains were characterized by PCR for their content in genes involved in lipopeptide biosynthesis and by MALDI-ToF for their lipopeptide production, revealing a high biodiversity of products. The difficulty to detect kurstakin genes led us to design two new sets of specific primers. An interesting potential of antifungal activity and the synthesis of two forms of fengycins differing in the eighth amino acid (Gln/Glu) were found from the strain 8. Investigation of its genome led to the finding of an adenylation domain of the fengycin synthetase predicted to activate the glutamate residue instead of the glutamine one. According to the comparison of both the results of MALDI-ToF-MS and genome analysis, it was concluded that this adenylation domain could activate both residues at the same time. This study highlighted that the richness of the Algerian ecosystems in Bacillus strains is able to produce: surfactin, pumilacidin, lichenysin, kurstakin, and different types of fengycins. © 2018 Springer-Verlag GmbH Germany, part of Springer Natur

    Evolution of protein domain architectures

    Get PDF
    This chapter reviews current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this will directly impact which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multi-domain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a discussion of some available tools for computational analysis or exploitation of protein domain architectures and their evolution

    Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals

    Full text link
    International audienceBacteria belonging to the genus Burkholderia live in various ecological niches and present a significant role in the environments through the excretion of a wide variety of secondary metabolites including modular nonribosomal peptides (NRPs) and polyketides (PKs). These metabolites represent a widely distributed biomedically and biocontrol important class of natural products including antibiotics, siderophores, and anticancers as well as biopesticides that are considered as a novel source that can be used to defend ecological niche from competitors and to promote plant growth. The aim of this review is to present all NRPs produced or potentially produced by strains of Burkholderia, as NRPs represent a major source of active compounds implicated in biocontrol. The review is a compilation of results from a large screening we have performed on 48 complete sequenced genomes available in NCBI to identify NRPS gene clusters, and data found in the literature mainly because some interesting compounds are produced by strains not yet sequenced. In addition to NRPs, hybrids NRPs/PKs are also included. Specific features about biosynthetic gene clusters and structures of the modular enzymes responsible for the synthesis, the biological activities, and the potential uses in agriculture and pharmaceutical of NRPs and hybrids NRPs/PKs will also be discussed

    To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a

    Full text link
    Pseudomonas CMR12a is a biocontrol strain that produces phenazine antibiotics and as yet uncharacterized cyclic lipopeptides (CLPs). The CLPs of CMR12a were studied by chemical structure analysis and in silico analysis of the gene clusters encoding the nonribosomal peptide synthetases responsible for CLP biosynthesis. CMR12a produces two different classes of CLPs: orfamides B, D and E, whereby the latter two represent new derivatives of the orfamide family, and sessilins A-C. The orfamides are made up of a 10 amino acid peptide coupled to a β-hydroxydodecanoyl or β-hydroxytetradecanoyl fatty acid moiety, and are related to orfamides produced by biocontrol strain P. protegens Pf-5. The sessilins consist of an 18 amino acid peptide linked to a β-hydroxyoctanoyl fatty acid, and differ in one amino acid from tolaasins, toxins produced by the mushroom pathogen P. tolaasii. CLP biosynthesis mutants were constructed and tested for biofilm formation and swarming motility. Orfamides appeared indispensable for swarming, while sessilin mutants showed reduced biofilm formation, but enhanced swarming motility. The interplay between the two classes of CLPs fine-tunes these processes. The presence of sessilins in wild type CMR12a interferes with swarming by hampering the release of orfamides and by co-precipitating orfamides to form a white-line-in agar
    • …
    corecore