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This paper proposes and examines a direct formulation in space domain of the so-called supersonic

acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulat-

ing energy in the near-field of the source, providing a map of the acoustic energy that is radiated

into the far field. To date, its calculation has been formulated in the wave number domain, filtering

out the evanescent waves outside the radiation circle and reconstructing the acoustic field with only

the propagating waves. In this study, the supersonic intensity is calculated directly in space domain

by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that

corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field

that propagates effectively to the far field is calculated via direct filtering in space domain. This pa-

per presents the theory, as well as a numerical example to illustrate some fundamental principles.

An experimental study on planar radiators was conducted to verify the validity of the technique.

The experimental results are presented, and serve to illustrate the usefulness of the analysis, its

strengths and limitations. VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3662052]

PACS number(s): 43.40.Rj, 43.60.Sx, 43.20.Rz, 43.20.Ye [EGW] Pages: 186–193

I. INTRODUCTION

The concept of efficient radiation is central in the analy-

sis of sound radiation from plates and other wave bearing

structures, because it gives an indication of the flow of

acoustic energy that is radiated effectively into the far field.

It indicates how much of the acoustic energy flow in the near

field of a source is energy that propagates to the far field,

and how much is circulating energy resulting from the inter-

action of propagating and evanescent waves near the source.

The far field radiation of sources is often the quantity of

concern in acoustics and noise control, because this is the

quantity to which a potential observer is typically exposed.

Consequently, it has been studied extensively in the literature

for decades, e.g., sound radiation from plates and panels,1–3

identification of velocity patterns that radiate effectively into

the far field based on singular value analysis,4–6 etc.

The wave number processing of sound fields and the de-

velopment of near-field acoustic holography (NAH),7,8 have

laid a new ground for calculating in practice the efficient and

inefficient radiation from sound sources. Williams9,10 intro-

duced the concept of supersonic acoustic intensity for identi-

fying and characterizing the regions of a source that radiate

effectively into the far field.

The term “supersonic intensity” was chosen because of

its close connection with the supersonic flexural waves in a

structure.10 However, this terminology might lead to the

notion that the acoustic waves related to this quantity are

supersonic, although this is not the case, their propagation

speed is perfectly sonic.

So far, the calculation of the supersonic intensity has

been formulated in the framework of Fourier based NAH,

where the sound field is explicitly transformed into the wave

number domain. The wave number components outside the

radiation circle,8 which correspond to evanescent waves, are

filtered out, and the reconstruction is based only on the terms

inside the radiation circle, which correspond to the waves

that propagate to the far field.

The purpose of this paper is to propose and examine a for-

mulation of the supersonic intensity directly in the space domain.

The calculation is expressed as a two-dimensional convolution

product between the acoustic field and a spatial operator or filter

mask. The implementation of the method is straightforward and

does not require transformations into the wave number domain.

This approach can be convenient for estimating the efficient

radiation of a source when the Fourier transformation of the

sound field is not otherwise required. This is the case, for

instance, when using holographic methods that are not based on

FFT processing,11–14 applied directly to measured data, etc.

The paper presents the theory and provides a numerical

illustration of a one-dimensional radiator, revisiting the con-

cept of effective and ineffective radiation. An experimental

study is also included, which aims at illustrating the useful-

ness of the supersonic acoustic intensity in practice.

II. THEORY

A. Fourier based supersonic acoustic intensity

Consider the wave number spectra of the pressure and

normal component of the particle velocity in a plane z:8
a)Author to whom correspondence should be addressed. Electronic mail:

efg@elektro.dtu.dk
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Pðkx; ky; zÞ ¼
ð ð1
�1

pðx; y; zÞejðkxxþkyyÞdxdy; (1)

Uðkx; ky; zÞ ¼
ð ð1
�1

uðx; y; zÞejðkxxþkyyÞdxdy; (2)

where the time dependence ejxt is omitted. The sound pres-

sure and particle velocity that are radiated into the far field

are associated with the spectral energy inside the radiation

circle,

pðsÞðx; y; zÞ ¼ 1

4p2

ð ð
Sr

Pðkx; ky; zÞe�jðkxxþkyyÞdkxdky; (3)

uðsÞðx; y; zÞ ¼ 1

4p2

ð ð
Sr

Uðkx; ky; zÞe�jðkxxþkyyÞdkxdky; (4)

where Sr denotes the surface corresponding to the radiation

circle. The flow of acoustic energy that is radiated effec-

tively into the far field, i.e., the supersonic intensity, is

defined as

IðsÞðx; y; zÞ ¼ 1

2
RefpðsÞðx; y; zÞuðsÞðx; y; zÞ�g; (5)

where the subscript asterisk denotes the complex conjugate.

It is apparent that the supersonic intensity is essentially

a spatially low-pass filtered version of the conventional

active intensity, where the evanescent waves are filtered out.

B. Direct formulation in space domain

Let the function Hðkx; kyÞðsÞ be defined as the unit circle

function,

Hðkx; kyÞðsÞ ¼

1 if ðk2
x þ k2

yÞ < k2

1

2
if ðk2

x þ k2
yÞ ¼ k2

0 if ðk2
x þ k2

yÞ > k2;

8>>><
>>>:

(6)

which represents a two-dimensional circular unit pulse, with

the transition from zero to one at the boundary of the radia-

tion circle.

The pressure and velocity that are radiated into the far

field, Eqs. (3) and (4), can be expressed as

pðsÞðx; y; zÞ ¼
ð ð1
�1

Pðkx; ky; zÞ � HðsÞðkx; kyÞ

� e�jðkxxþkyyÞdkxdky; (7)

uðsÞðx; y; zÞ ¼
ð ð1
�1

Uðkx; ky; zÞ � HðsÞðkx; kyÞ

� e�jðkxxþkyyÞdkxdky: (8)

From the convolution theorem, the products in the wave

number domain in Eqs. (7) and (8) are equivalent in space

domain to a two-dimensional convolution between the

acoustic field and hðsÞðx; yÞ,

pðsÞðx; y; zÞ ¼ pðx; y; zÞ � hðsÞðx; yÞ; (9)

uðsÞðx; y; zÞ ¼ uðx; y; zÞ � hðsÞðx; yÞ: (10)

The two-dimensional convolution is defined as

pðsÞðx;y;zÞ¼
ðð1
�1

p x0;y0;zð ÞhðsÞðx�x0;y�y0Þdx0dy0: (11)

Note that the function hðsÞðx; yÞ is the space domain version

of the radiation circle. Because of its relation with the radia-

tion circle, it will be referred to as the radiation filter mask
or radiation kernel. It can be calculated by inverse transfor-

mation of the function HðsÞðkx; kyÞ from the wave number do-

main to the space domain,

hðsÞðx; yÞ ¼ 1

4p2

ð ð1
�1

HðsÞðkx; kyÞe�jðkxxþkyyÞdkxdky: (12)

Due to the geometry and properties of HðsÞðkx; kyÞ, it is con-

venient to introduce polar coordinates, so that q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and kq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. The function HðsÞðkqÞ is defined in polar

coordinates as

HðsÞðkqÞ ¼

1 if kq < k

1

2
if kq ¼ k

0 if kq > k:

8>>><
>>>:

(13)

Because HðsÞðkqÞ is circularly symmetric, the inverse Fourier

transform of Eq. (12) can be expressed as an inverse Hankel

transform,

hðsÞðqÞ ¼ 1

2p

ð1
0

H
ðsÞ
k ðkqÞJ0ðkqqÞkqdkq: (14)

The H
ðsÞ
k ðkqÞ function is zero for kq > k. Therefore, the pre-

vious integral is equivalent to

hðsÞðqÞ ¼ 1

2p

ðk

0

J0ðkqqÞkqdkq: (15)

This integral can be evaluated analytically making use of the

relation
Ð

xJ0ðaxÞdx ¼ ðx=aÞJ1ðaxÞ,15 and therefore, the radi-

ation filter mask is

hðsÞðqÞ ¼ k

2pq
J1ðkqÞ; (16)

which back in rectangular coordinates is

hðsÞðx; yÞ ¼ k

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p J1ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ: (17)

This function is shown in Fig. 1.
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Using Eq. (17) for hðsÞðx; yÞ, the supersonic intensity can

easily be calculated from Eqs. (5), (9), and (10)

Consider the example of a baffled monopole with volume

velocity Q radiating into free field half-space. In the source

plane (z¼ 0), the particle velocity component normal to the

x; y plane is uzðx; y; 0Þ ¼ QdðxÞdðyÞ: From Eq. (10) and the

shifting property of the Dirac delta function, it follows that

the supersonic normal velocity of the baffled point source is

uðsÞz ðx; y; 0Þ ¼
kQ

2pq
J1ðkqÞ: (18)

This expression is identical to the expression derived in

Ref. 10.

C. Discrete formulation

Consider a square uniform array of dimensions N � N
and a radiation kernel of L� L. The general left justified

form of the discrete two-dimensional convolution is

pðsÞðx; y; zÞ ¼ H0

XN�1

m¼0

XN�1

n¼0

pðx0m; y0n; zÞ

� hðsÞðx� x0m; y� y0nÞ; (19)

where H0 corresponds to the area of each grid position,

H0 ¼ DxDy. Note that due to the circular symmetry of the

filter mask, the convolution product is equivalent to a two-

dimensional correlation. The output of the convolution is of

dimensions M �M, where M ¼ N þ L� 1.

The convolution sum can be formulated in vector-space

as

p
ðsÞ
½M2�1� ¼ T½M2�N2� � p½N2�1�; (20)

where T is a M2 � N2 matrix containing the “shifting” radia-

tion filter mask. Each column of T operates on a single point

of the input matrix, and it accounts for the shifting of the

spatial filter mask through that point. For details of the

implementation see Refs. 16 and 17.

III. ONE-DIMENSIONAL RADIATOR

It is interesting to consider a one-dimensional finite radi-

ator because it is a simple illustration and yet the generaliza-

tion to the two-dimensional case is straightforward. The one-

dimensional supersonic filter in the wave number domain is

ideally a rectangular step function with a cutoff frequency

determined by the wave number in air, k. The inverse Fourier

transform of this filter is the radiation kernel in one

dimension,

h
ðsÞ
1DðxÞ ¼ AhsincðkxÞ; (21)

with Ah ¼ 2k. It follows from this expression that the filter

has an infinite impulse response in space domain, due to the

ideal cut-off. This infinitely long response is not well com-

patible with a finite measurement aperture. Furthermore, it is

a well-known fact that the ideal low-pass filtering introduces

unwanted ringing artifacts via the Gibbs phenomenon.

Therefore, it is convenient to define a finite filter mask that is

more suited in practice to the non-ideal case. A simple and

well established solution in signal processing and imaging to

minimize ringing artifacts and preserve the general profile of

the ideal filter is to use a Lanczos filter,18,19

h
ðsÞ
w;1DðxÞ¼

AhsincðkxÞsincðkx=aÞ; for�a<kx<a
0 otherwise;

�
(22)

where a determines how many sidelobes of the ideal filter are

included before tapering to zero. This filter can be seen as an

ideal brick-wall filter, weighted with the mainlobe of a sinc

function. Typical values of a are a ¼ ½1; 2; 3; :::�, because in-

teger numbers make the two sincs of Eq. (22) be zero at the

edge of the filter mask, providing a smooth cut-off.

The source considered is a theoretical one-dimensional

plate, 4 m long and simply supported at the boundaries. Fig-

ures 2(a) and 2(b) show the two radiation filter masks from

Eqs. (21) and (22) for a wave number in air of k¼ 5 rad/m.

Figures 2(c) and 2(d) show the normal velocity profile of the

1-D radiator in its m¼ 5 and m¼ 9 modes, respectively. Fig-

ures 2(e) and 2(f) show the result of the direct convolution

between the two modes and the radiation filter masks. The spa-

tial wave number of the m¼ 5 mode is kx ¼ mp=L � 4 rad/m.

In this case, the main-lobe width of the supersonic operator,

�1.25 m, is smaller than the spatial wavelength of the plate,

FIG. 1. (Top) Radiation filter in the wave number domain HðsÞðkx; kyÞ and

(bottom) the corresponding radiation kernel in the space domain hðsÞðx; yÞ.
The axes are normalized. Note that the width of the mainlobe of hðsÞ is equal

to the wavelength in air.
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1.6 m, and all regions contribute efficiently to the far field

radiation. For the m¼ 9 mode, the spatial wave number is

kx � 7 rad/m (spatial wavelength of 0.8 m), and the plate

does not radiate efficiently because neighboring regions can-

cel each other under the mainlobe of the filter mask in the

convolution process. There is only efficient sound radiation

at the boundary of the plate due to the partial lack of cancel-

lation. In two-dimensions, this corresponds to the well

known theory of corner and edge radiation in plates for

modes vibrating below the critical frequency.1,2 The results

also show that the ideal filter of Eq. (21) introduces ringing

artifacts due to the infinite impulse response, whereas these

artifacts are much less present in the Lanczos filter of Eq.

(22). The ringing artifacts introduced are apparent in Figs.

2(e) and 2(f).

This example is reminiscent of well-known analyses2,3

where the efficient and inefficient radiation from plates can

be seen as a result of the convolution in the wave number do-

main between a Dirac delta and a sinc function. The Dirac

delta results from the modal spatial frequency of the plate,

and the sinc function from the finite extent of the plate. This

results in a wave number spectrum with two sinc functions

centered at ð6kxÞ. Above the critical frequency, the main

lobes of the sinc functions fall within the radiation circle,

resulting in efficient radiation. Below the critical frequency,

only some sidelobes of the sinc functions fall within the radi-

ation circle, giving rise to inefficient radiation. With the

approach proposed in this paper, this phenomena can be seen

directly as a convolution between the space domain repre-

sentation of the radiation circle and the acoustic field, as

described in the foregoing.

IV. EXPERIMENTAL STUDY

An experimental study has been conducted to examine

the validity and applicability of the method proposed in this

paper. To date, only simulations of the supersonic intensity

on planar radiators have been published in the literature.

The source under study was a baffled steel plate of

dimensions 50 cm� 70 cm, and 1 mm thick, rigidly mounted

at the boundaries (see Fig. 3). The plate was driven at (x¼ 5,

y¼�10) cm. The normal vibration velocity of the plate was

measured with a Polytec laser vibrometer OFV 056, over a

grid of 26� 36 positions. Based on these measurements, an

equivalent source method model11,20 was used to calculate

the sound pressure and sound intensity on the surface of the

plate. The equivalent sources were conformal to the mea-

surement positions, retracted 3 cm behind the plate. To ver-

ify the calculation of the pressure, the results were compared

to the ones obtained by evaluating the Rayleigh integral via

FFT as in Ref. 21 The results from the two methods were

nearly identical, with a deviation lower than 5%.

FIG. 2. (Color online) One-dimensional radiator above and below coincidence. (a) Wave number in air k¼ 5 rad/m: Ideal radiation filter mask, as in Eq. (21).

(b) Finite radiation filter mask, as in Eq. (22) with a¼ 3. Normal velocity profile of the radiator (c) for an m¼ 5 mode and (d) for an m¼ 9 mode. Result of the

convolution with the filter mask (e) for the m¼ 5 mode and (f) for the m¼ 9 mode, with the ideal filter (dashed line) and with the finite filter (solid line). The

ordinate axes are normalized.

FIG. 3. (Color online) The laser measurements.
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Note that an analogous methodology could be used if

instead of measuring the normal velocity of the plate, the

sound pressure was measured with a microphone array in

the near-field of the source, as in near-field acoustic holog-

raphy. However, in this study, laser measurements have

been used for simplicity and because they provide a clear

illustration.

In order to minimize ringing artifacts in the estimation

of the supersonic intensity and limit the extent of the filter

mask, a windowed version of the ideal filter is proposed. It

follows the concept of Lanczos filtering, but it is adapted to

the circularly symmetric filter mask, basing the window

weights on the mainlobe of a first order Bessel function of the

first kind. Therefore, a non-separable radiation kernel is used

in which the infinite ideal response is weighted with the main-

lobe of a Bessel function. This kernel is better suited for the

discrete nature of the practical measurement. It not only mini-

mizes the ringing artifacts, but it also reduces the size of the

filter mask, making it computationally more efficient,

hðsÞw ðqÞ ¼
Ak

2pq2
J1ðkqÞJ1ðkq=nÞ; for kq < n

0 otherwise;

8<
: (23)

where A is a normalizing factor of the window. The value of

the parameter n determines the size of the filter and the num-

ber of sidelobes included in the filter mask, and consequently

the greater or lesser cut-off slope. The value of n could be

any positive real number, but it is advantageous when it is

one of the zero crossings of the first order Bessel function of

the first kind ½n ¼ 3:8317; 7:0156; 10:1735; 13:3237; :::�. In

such case, the ideal infinite filter and the weighting Bessel

mainlobe are both zero at the edge of the filter mask, making

it continuous and differentiable to second order, providing a

smooth cut-off.

In this study, the third zero-crossing of the Bessel func-

tion was used, n ¼ 10:1735. Nevertheless, using other values

(n ¼ 7:0156; 13:3237; :::) does not change the results signifi-

cantly. The filter is shown in Fig. 4. Comparing it with the

ideal filter in Eq. (17), shown in Fig. 1, it is worth noting that

the mainlobes of the two filter masks are virtually identical,

whereas the sidelobes of the finite filter are soon tapered to

zero, limiting its extent and consequently minimizing the

characteristic ringing of the ideal filter.

Figure 5 shows the active sound intensity and the super-

sonic acoustic intensity on the surface of the plate at 125 Hz,

which corresponds to a ð2; 2Þ modal shape. Note the alternat-

ing positive and negative active intensity regions, indicating

a circulating flow of energy from one region of the plate into

another, giving rise to a very poor far field radiation, as

shown by the supersonic intensity map. It should be noted

that the wavelength in air is much larger than the dimensions

of the plate, and the supersonic intensity just shows a maxi-

mum near the driving point, as a source of far field radiation.

It is apparent that there is an imaging constraint due to the

resolution limit of the wavelength in air compared to the size

of the aperture.

Figure 6 shows the active sound intensity and the super-

sonic intensity on the surface of the plate at 950 Hz, which

corresponds to a ð4; 10Þ modal shape. This frequency is also

below coincidence, and a very reactive sound field is found.

In this case, there are multiple regions with alternating posi-

tive and negative intensities, making it more difficult to iden-

tify and quantify how are they contributing to the net power

output of the source. However, the supersonic intensity map

indicates that the main radiation is from the corners of the

plate, where there is a partial lack of cancellation at the

edges. This result agrees with the well-known theory of cor-

ner and edge radiation from plates.

Figure 7 shows the active intensity and the supersonic

intensity on the surface of the plate at 1135 Hz. At this fre-

quency both corner and edge modes seem to be excited.

There is a very high modal density, and the vibration pattern

cannot be associated with an individual mode shape. The su-

personic intensity map shows that there is in fact effective

sound radiation from the corners and edges of the plate into

the far field. Note that in all three cases (Figs. 5–7) the super-

sonic intensity level is significantly lower than the active

sound intensity due to the circulation of energy occurring

below coincidence.

Figure 8 shows the supersonic intensity of the plate at

950 and 1135 Hz calculated using FFT based convolution.

The results are closely similar to those in Figs. 6 and 7,

obtained via direct convolution with the finite filter in

FIG. 4. (Top) Finite radiation filter in the wave number domain HðsÞðkx; kyÞ
and (bottom) the corresponding radiation kernel in the space domain

h
ðsÞ
w ðx; yÞ as in Eq. (23), with n ¼ 10:1735. The overshooting at the pass

band is of 61:2 dB and the highest sidelobe level in the frequency response

is �30 dB.
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Eq. (23), indicating the underlying equivalence between the

two methodologies.

It has been shown that the supersonic intensity represents

the fraction of acoustic energy that contributes to the total

power output from the source, in other words, that there is con-

servation of power.9,10 In this experimental study, the total

power radiated by the source has been calculated from the

active sound intensity, as well as from the estimated supersonic

intensity. At 950 Hz, the power calculated from the active in-

tensity is 1:5� 10�10 W and from the supersonic intensity it is

1� 10�10 W (�1.7 dB deviation). At 1135 Hz, the power cal-

culated from the active intensity is 2:5� 10�9 W, and from

the supersonic intensity it is 1:5� 10�9 W (�2 dB deviation).

The sound power calculated from the supersonic

intensity is somewhat underestimated due to the truncation

introduced by the finite measurement aperture. The underes-

timation of the sound power is more pronounced in the low

frequency range, where the acoustical wavelength, which

determines the width of the radiation kernel, is much larger

than the aperture. In the present experiment, at 127 Hz, there

was an underestimation of the power of about 8 dB. How-

ever, if the size of the measurement aperture is increased to

82� 102 cm2 (this was done by zero-padding the measured

normal velocity and calculating the corresponding sound

pressure over a larger aperture), the underestimation at

127 Hz is reduced to 4 dB, whereas at 950 and 1135 Hz it is

less than 1 dB. Eventually, the estimation always converges

to the correct radiated power by sufficiently extending the

measurement aperture, also at lower frequencies, due to the

conservation of power.

Lastly, regarding the calculation method, the total power

estimated via either direct convolution or FFT processing was

practically the same, within 60.25 dB. On the whole, the ex-

perimental results confirm that the supersonic intensity is a

meaningful measure of the net far field output of the source.

V. DISCUSSION

The formulation presented in this paper seems to be con-

venient for applications where the explicit transformation of

sound fields into the k-space domain is not required. This is the

FIG. 5. (Color online) (Top) Active sound intensity on the source plane and

(bottom) the supersonic sound intensity at 125 Hz. Note the negative active

sound intensity.

FIG. 6. (Color online) (Top) Active sound intensity on the source plane and

supersonic sound intensity (bottom) at 950 Hz.
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case for many of the existing holography techniques, where the

direct formulation proposed here could be applied directly after

the reconstruction of the acoustic field. The methodology could

also be applied directly to measurements or to numerical calcu-

lations of vibrating sources, in order to provide an estimation of

the effective radiation of the source into the far field.

The Fourier based convolution and the direct convolu-

tion operations are closely related to each other, yielding

similar results, although there are some fundamental differ-

ences. Most notably, the Fourier based convolution assumes

periodicity of the signals, and therefore proper zero padding is

required (to at least the size of the measurement positions plus

the filter mask), to avoid possible errors. The direct convolu-

tion does not assume periodicity, and it is a simple operation

that can be more accurate on the boundaries of the data

regardless of the size of the measurement and the filter mask.

Regarding the computational complexity of the two

implementations, given an array of size N � N, a radiation

filter mask of dimensions L� L, and an output array of

M �M, where M ¼ N þ L� 1, the number of operations

required in a two-dimensional convolution is of order M2N2.

The number of operations using FFT has a lower bound of

order M2ð1þ 2log2ðM2ÞÞ.16,22 In some disciplines, such as

image processing, the input vectors or matrices are typically

very large, containing at least several millions of elements.

Therefore, the FFT implementation of the filtering process

can save a tremendous computation effort. However, in the

case of array acoustics, where typically the input vectors are

of a few hundred points or less, there is not a clear computa-

tional basis for preferring an FFT implementation, because

the complexity of the operation is small in any case. Further-

more, for few points, the direct convolution can be computa-

tionally lighter.

It has been shown in the foregoing how the sharp cut-

off in the wave number domain due to the ideal filter intro-

duces ringing artifacts via the Gibbs phenomenon. Although

the sharp ideal cut off is theoretically rigorous, it poses

some difficulties in practice. Therefore, it is convenient to

use instead a finite filter that is suited for the practical

implementation. In the wave number domain this can be

done by choosing an appropriate lowpass FIR filter

FIG. 7. (Color online) (Top) Active sound intensity on the source plane and

(bottom) the supersonic intensity at 1135 Hz.

FIG. 8. (Color online) Supersonic intensity (as in Figs. 6 and 7), calculated

using FFT-based filtering. (Top) 950 Hz; (bottom) 1350 Hz.

192 J. Acoust. Soc. Am., Vol. 131, No. 1, January 2012 Fernandez-Grande et al.: Supersonic intensity in space domain

Downloaded 09 Feb 2012 to 192.38.67.112. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



(Butterworth, etc.).22 Alternatively, the space domain for-

mulation proposed in this paper makes it possible to design

the desired filter mask by means of the straightforward and

well-known windowing method.23

It is not the purpose of this paper to make a comparison

between the many available filters. Nevertheless, a non-

separable circularly symmetric filter suited to the problem

has been proposed. It provides a good compromise between

sharp cut-off, and low ringing artifacts.

VI. CONCLUSIONS

In this paper, the concept of supersonic acoustic inten-

sity has been examined and formulated as a direct filtering

operation in space domain. The method makes it possible to

identify the regions of a source that radiate into the far field

and to estimate how much of the acoustic energy flow propa-

gates to the far field, contributing to the net power output of

the source.

A numerical example as well as an experimental study

have served to illustrate the method and examine its advan-

tages and limitations. The method is appealing due to its

simplicity and the fact that it does not require transforma-

tions into the wave number domain. Hence, it can be useful

in the general case for applications in which the Fourier

transformation of sound fields is not required. Ultimately,

the formulation presented in this paper contributes to an al-

ternative, yet equivalent description of the near field and far

field radiation from acoustic sources.
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