2,837 research outputs found

    Perceptions and imaginaries about the fourth industrial revolution between geographies of opportunity and discontent: Some reflections on the Italian case

    Get PDF
    The pervasiveness of advanced technologies and their disruptive impact on society have spurred the debate on the emergence of a new industrial revolution and on its positive and negative effects, both at an individual and spatial level. This paper aims to contribute to this debate, focusing attention on the perception of changes related to the Fourth Industrial Revolution and exploring new methods of analysis of the manifestations of both techno-enthusiasm and opposition to it. Starting from the extensive literature in this field, the work adopts two research perspectives: the study of imaginaries and narratives developed around the Fourth Industrial Revolution, which convey different messages from social groups and places; the geographies of opportunity and discontent, which address the resentment expressed by some localities towards advanced technological models and growing inequalities. In this work the Fourth Industrial Revolution is not interpreted through data about the technological variables or interviews to protagonists of the phenomenon; rather, emphasis is on the points of view of non-institutional subjects and, in particular, the opinions expressed by people on the Web. For this reason, the sentiment analysis has been adopted to identify both positive and negative polarities and the relevance of specific feelings through the selection of key words related to the notion of the Fourth Industrial Revolution. The empirical analysis based on this methodology focuses on the Italian case in a specific period (first and second phase of the pandemic, from January 2020 to September 2021) and, at a local level, on the comparison between four medium-sized cities (Pisa, Lecce, Taranto and Terni). This paper also tries to extend recent contributions through the provision of new perspectives for the definition of policies designed with the involvement of the population and places regarding both the processes of technological change and the definition of new socio-spatial models

    Prospects for K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu } at CERN in NA62

    Full text link
    The NA62 experiment will begin taking data in 2015. Its primary purpose is a 10% measurement of the branching ratio of the ultrarare kaon decay K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu }, using the decay in flight of kaons in an unseparated beam with momentum 75 GeV/c.The detector and analysis technique are described here.Comment: 8 pages for proceedings of 50 Years of CP

    Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects

    Full text link
    Using the helicity method we derive complete formulas for the joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. In the helicity method the angular analysis is of cascade type, i.e. each decay in the decay chain is analyzed in the respective rest system of that particle. Such an approach is ideally suited as input for a Monte Carlo event generation program. As a specific example we take the decay Ξ0Σ++l+νˉl\Xi^0 \to \Sigma^+ + l^- + \bar{\nu}_l (l=e,μl^-=e^-, \mu^-) followed by the nonleptonic decay Σ+p+π0\Sigma^+ \to p + \pi^0 for which we show a few examples of decay distributions which are generated from a Monte Carlo program based on the formulas presented in this paper. All the results of this paper are also applicable to the semileptonic and nonleptonic decays of ground state charm and bottom baryons, and to the decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos corrected, comments added, references added and update

    ChPT tests at the NA48 and NA62 experiments at CERN

    Full text link
    The NA48/2 Collaboration at CERN has accumulated unprecedented statistics of rare kaon decays in the Ke4 modes: Ke4(+-) (K±π+πe±νK^\pm \to \pi^+ \pi^- e^\pm \nu) and Ke4(00) (K±π0π0e±νK^\pm \to \pi^0 \pi^0 e^\pm \nu) with nearly one percent background contamination. The detailed study of form factors and branching rates, based on these data, has been completed recently. The results brings new inputs to low energy strong interactions description and tests of Chiral Perturbation Theory (ChPT) and lattice QCD calculations. In particular, new data support the ChPT prediction for a cusp in the π0π0\pi^0\pi^0 invariant mass spectrum at the two charged pions threshold for Ke4(00) decay. New final results from an analysis of about 400 K±π±γγK^\pm \to \pi^\pm \gamma \gamma rare decay candidates collected by the NA48/2 and NA62 experiments at CERN during low intensity runs with minimum bias trigger configurations are presented. The results include a model-independent decay rate measurement and fits to ChPT description.Comment: XIIth International Conference on Heavy Quarks and Leptons 2014, Mainz, German

    Recent NA48/2 and NA62 results

    Full text link
    The NA48/2 Collaboration at CERN has accumulated and analysed unprecedented statistics of rare kaon decays in the Ke4K_{e4} modes: Ke4(+)K_{e4}(+-) (K±π+πe±νK^\pm \to \pi^+ \pi^- e^\pm \nu) and Ke4(00)K_{e4}(00) (K±π0π0e±νK^\pm \to \pi^0 \pi^0 e^\pm \nu) with nearly one percent background contamination. It leads to the improved measurement of branching fractions and detailed form factor studies. New final results from the analysis of 381 K±π±γγK^\pm \to \pi^\pm \gamma \gamma rare decay candidates collected by the NA48/2 and NA62 experiments at CERN are presented. The results include a decay rate measurement and fits to Chiral Perturbation Theory (ChPT) description.Comment: Prepared for the Proceedings of "Moriond QCD and High Energy Interactions. March 22-29 2014." conferenc

    First observation of the KS->pi0 gamma gamma decay

    Get PDF
    Using the NA48 detector at the CERN SPS, 31 KS->pi0 gamma gamma candidates with an estimated background of 13.7 +- 3.2 events have been observed. This first observation leads to a branching ratio of BR(KS->pi0 gamma gamma) = (4.9 +- 1.6(stat) +- 0.9(syst)) x 10^-8 in agreement with Chiral Perturbation theory predictions.Comment: 10 pages, 4 figures submitted to Phys. Lett.

    Measurement of the branching ratio of the decay Ξ0Σ+μνˉμ\Xi^{0}\rightarrow \Sigma^{+} \mu^{-} \bar{\nu}_{\mu}

    Full text link
    From the 2002 data taking with a neutral kaon beam extracted from the CERN-SPS, the NA48/1 experiment observed 97 Ξ0Σ+μνˉμ\Xi^{0}\rightarrow \Sigma^{+} \mu^{-} \bar{\nu}_{\mu} candidates with a background contamination of 30.8±4.230.8 \pm 4.2 events. From this sample, the BR(Ξ0Σ+μνˉμ\Xi^{0}\rightarrow \Sigma^{+} \mu^{-} \bar{\nu}_{\mu}) is measured to be (2.17±0.32stat±0.17syst)×106(2.17 \pm 0.32_{\mathrm{stat}}\pm 0.17_{\mathrm{syst}})\times10^{-6}

    Search for CP violation in K0 -> 3 pi0 decays

    Get PDF
    Using data taken during the year 2000 with the NA48 detector at the CERN SPS, a search for the CP violating decay K_S -> 3 pi0 has been performed. From a fit to the lifetime distribution of about 4.9 million reconstructed K0/K0bar -> 3 pi0 decays, the CP violating amplitude eta_000 = A(K_S -> 3 pi0)/A(K_L -> 3 pi0) has been found to be Re(eta_000) = -0.002 +- 0.011 +- 0.015 and Im(eta_000) = -0.003 +- 0.013 +- 0.017. This corresponds to an upper limit on the branching fraction of Br(K_S -> 3 pi0) < 7.4 x 10^-7 at 90% confidence level. The result is used to improve knowledge of Re(epsilon) and the CPT violating quantity Im(delta) via the Bell-Steinberger relation.Comment: 18 pages, 7 figures, submitted to Phys. Lett.

    Observation of the rare decay K_S -> pi^0mu^+mu^-

    Full text link
    A search for the decay K_S -> pi^0mu^+mu^- has been made by the NA48/1 Collaboration at the CERN SPS accelerator. The data were collected during 2002 with a high-intensity K_S beam. Six events were found with a background expectation of 0.22^+0.18_-0.11 event. Using a vector matrix element and unit form factor, the measured branching ratio is B(K_S -> pi^0mu^+mu^-)=[2.9^+1.5_-1.2(stat)+/-0.2(syst)]x10^{-9}.Comment: 19 pages, 8 figures, 4 tables. To be published in Physics Letters
    corecore