13,934 research outputs found

    Characterizing user requirements for future land observing satellites

    Get PDF
    The objective procedure was developed for identifying probable sensor and mission characteristics for an operational satellite land observing system. Requirements were systematically compiled, quantified and scored by type of use, from surveys of federal, state, local and private communities. Incremental percent increases in expected value of data were estimated for critical system improvements. Comparisons with costs permitted selection of a probable sensor system, from a set of 11 options, with the following characteristics: 30 meter spatial resolution in 5 bands and 15 meters in 1 band, spectral bands nominally at Thematic Mapper (TM) bands 1 through 6 positions, and 2 day data turn around for receipt of imagery. Improvements are suggested for both the form of questions and the procedures for analysis of future surveys in order to provide a more quantitatively precise definition of sensor and mission requirements

    Astrophysical SS factor for the 15N(p,γ)16O{}^{15}{\rm N}(p,\gamma){}^{16}{\rm O} reaction from RR-matrix analysis and asymptotic normalization coefficient for 16O→15N+p{}^{16}{\rm O} \to {}^{15}{\rm N} + p. Is any fit acceptable?

    Get PDF
    The 15N(p,Îł)16O^{15}{\rm N}(p,\gamma)^{16}{\rm O} reaction provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong Jπ=1−J^{\pi}=1^{-} resonances at ER=312E_{R}= 312 and 962 keV and direct capture to the ground state. Recently, a new measurement of the astrophysical factor for the 15N(p,Îł)16O^{15}{\rm N}(p,\gamma)^{16}{\rm O} reaction has been published [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. The analysis has been done using the RR-matrix approach with unconstrained variation of all parameters including the asymptotic normalization coefficient (ANC). The best fit has been obtained for the square of the ANC C2=539.2C^{2}= 539.2 fm−1{}^{-1}, which exceeds the previously measured value by a factor of ≈3\approx 3. Here we present a new RR-matrix analysis of the Notre Dame-LUNA data with the fixed within the experimental uncertainties square of the ANC C2=200.34C^{2}=200.34 fm−1{}^{-1}. Rather than varying the ANC we add the contribution from a background resonance that effectively takes into account contributions from higher levels. Altogether we present 8 fits, five unconstrained and three constrained. In all the fits the ANC is fixed at the previously determined experimental value C2=200.34C^{2}=200.34 fm−1{}^{-1}. For the unconstrained fit with the boundary condition Bc=Sc(E2)B_{c}=S_{c}(E_{2}), where E2E_{2} is the energy of the second level, we get S(0)=39.0±1.1S(0)=39.0 \pm 1.1 keVb and normalized χ~2=1.84{\tilde \chi}^{2}=1.84, i.e. the result which is similar to [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. From all our fits we get the range 33.1≀S(0)≀40.133.1 \leq S(0) \leq 40.1 keVb which overlaps with the result of [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. We address also physical interpretation of the fitting parameters.Comment: Submitted to PR

    The Hilbert-Schmidt Theorem Formulation of the R-Matrix Theory

    Get PDF
    Using the Hilbert-Schmidt theorem, we reformulate the R-matrix theory in terms of a uniformly and absolutely convergent expansion. Term by term differentiation is possible with this expansion in the neighborhood of the surface. Methods for improving the convergence are discussed when the R-function series is truncated for practical applications.Comment: 16 pages, Late

    Spin-spin effects in radiating compact binaries

    Full text link
    The dynamics of a binary system with two spinning components on an eccentric orbit is studied, with the inclusion of the spin-spin interaction terms appearing at the second post-Newtonian order. A generalized true anomaly parametrization properly describes the radial component of the motion. The average over one radial period of the magnitude of the orbital angular momentum Lˉ\bar{L} is found to have no nonradiative secular change. All spin-spin terms in the secular radiative loss of the energy and magnitude of orbital angular momentum are given in terms of Lˉ\bar{L} and other constants of the motion. Among them, self-interaction spin effects are found, representing the second post-Newtonian correction to the 3/2 post-Newtonian order Lense-Thirring approximation.Comment: 12 pages, to appear in Phys. Rev.

    Two-proton events in the 17F(p,2p)16O reaction

    Get PDF
    In a recent experimental study (Gomez del Campo et al, PRL 86, 43 (2001)) of the reaction 17F(p,2p)16O, two-proton events were measured from excitations near a 1-, E*=6.15 MeV state in 18Ne. We calculate by means of R-matrix theory the resonant two-proton production cross section and branching ratios. We conclude that it is unlikely that two-proton production via population of the 1- state is sufficient to explain the observed two-proton events. Alternative sources of such events are discussed.Comment: 4 pages, 4 figures. Resubmission to Physical Review C (first received 6 March 2001

    On QCD Q2Q^2-evolution of Deuteron Structure Function F2D(xD,Q2)F_2^D(x_D,Q^2) for xD>1x_D>1

    Get PDF
    The deep-inelastic deuteron structure function (SF) F2D(xD,Q2)F_2^D(x_D,Q^2) in the covariant approach in light-cone variables is considered. The xDx_D and Q2Q^2-dependences of SF are calculated. The QCD analysis of generated data both for non-cumulative xD1x_D1 ranges was performed. It was shown that Q2Q^2-evolution of SF is valid for ranges 0.275<xD<0.850.275<x_D<0.85 and 1.1<xD<1.41.1<x_D<1.4 for the same value of QCD scale parameter Λ{\Lambda}. It was found the xDx_D-dependence of SF for the ranges is essentially different.Comment: LaTeX, 10 pages, 2 Postscript figure

    Coalescence of Two Spinning Black Holes: An Effective One-Body Approach

    Full text link
    We generalize to the case of spinning black holes a recently introduced ``effective one-body'' approach to the general relativistic dynamics of binary systems. The combination of the effective one-body approach, and of a Pad\'e definition of some crucial effective radial functions, is shown to define a dynamics with much improved post-Newtonian convergence properties, even for black hole separations of the order of 6GM/c26 GM / c^2. We discuss the approximate existence of a two-parameter family of ``spherical orbits'' (with constant radius), and, of a corresponding one-parameter family of ``last stable spherical orbits'' (LSSO). These orbits are of special interest for forthcoming LIGO/VIRGO/GEO gravitational wave observations. It is argued that for most (but not all) of the parameter space of two spinning holes the effective one-body approach gives a reliable analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a quantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a detection bias, in LIGO/VIRGO/GEO observations, favouring spinning black hole systems, and makes it urgent to complete the conservative effective one-body dynamics given here by adding (resummed) radiation reaction effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never approaches extremality.Comment: 26 pages, two eps figures, accepted in Phys. Rev. D, minor updating of the text, clarifications added and inclusion of a few new reference
    • 

    corecore