80 research outputs found

    Are you suffering from a large arterial occlusion? Please raise your arm!

    Get PDF
    Background and purpose: Triage tools to identify candidates for thrombectomy are of utmost importance in acute stroke. No prognostic tool has yet gained any widespread use. We compared the predictive value of various models based on National Institutes of Health Stroke Scale (NIHSS) subitems, ranging from simple to more complex models, for predicting large artery occlusion (LAO) in anterior circulation stroke. Methods: Patients registered in the SITS international Stroke Register with available NIHSS and radiological arterial occlusion data were analysed. We compared 2042 patients harbouring an LAO with 2881 patients having no/distal occlusions. Using binary logistic regression, we developed models ranging from simple 1 NIHSS-subitem to full NIHSS-subitems models. Sensitivities and specificities of the models for predicting LAO were examined. Results: The model with highest predictive value included all NIHSS subitems for predicting LAO (area under the curve (AUC) 0.77), yielding a sensitivity and specificity of 69% and 76%, respectively. The second most predictive model (AUC 0.76) included 4-NIHSS-subitems (level of consciousness commands, gaze, facial and arm motor function) yielding a sensitivity and specificity of 67% and 75%, respectively. The simplest model included only deficits in arm motor-function (AUC 0.72) for predicting LAO, yielding a sensitivity and specificity of 67% and 72%, respectively. Conclusions: Although increasingly more complex models yield a higher discriminative performance for predicting LAO, differences between models are not large. Assessing grade of arm dysfunction along with an established stroke-diagnosis model may serve as a surrogate measure of arterial occlusion-status, thereby assisting in triage decisions

    E2F transcription factor-1 modulates expression of glutamine metabolic genes in mouse embryonic fibroblasts and uterine sarcoma cells

    Get PDF
    Metabolic reprogramming is considered as a hallmark of cancer and is clinically exploited as a novel target for therapy. The E2F transcription factor-1 (E2F1) regulates various cellular processes, including proliferative and metabolic pathways, and acts, depending on the cellular and molecular context, as an oncogene or tumor suppressor. The latter is evident by the observation that E2f1-knockout mice develop spontaneous tumors, including uterine sarcomas. This dual role warrants a detailed investigation of how E2F1 loss impacts metabolic pathways related to cancer progression. Our data indicate that E2F1 binds to the promoter of several glutamine metabolism-related genes. Interestingly, the expression of genes in the glutamine metabolic pathway were increased in mouse embryonic fibroblasts (MEFs) lacking E2F1. In addition, we confirm that E2f1 <sup>-/-</sup> MEFs are more efficient in metabolizing glutamine and producing glutamine-derived precursors for proliferation. Mechanistically, we observe a co-occupancy of E2F1 and MYC on glutamine metabolic promoters, increased MYC binding after E2F1 depletion and that silencing of MYC decreased the expression of glutamine-related genes in E2f1 <sup>-/-</sup> MEFs. Analyses of transcriptomic profiles in 29 different human cancers identified uterine sarcoma that showed a negative correlation between E2F1 and glutamine metabolic genes. CRISPR/Cas9 knockout of E2F1 in the uterine sarcoma cell line SK-UT-1 confirmed elevated glutamine metabolic gene expression, increased proliferation and increased MYC binding to glutamine-related promoters upon E2F1 loss. Together, our data suggest a crucial role of E2F1 in energy metabolism and metabolic adaptation in uterine sarcoma cells

    Cardiovascular care of patients with stroke and high risk of stroke: The need for interdisciplinary action: A consensus report from the European Society of Cardiology Cardiovascular Round Table.

    Get PDF
    Comprehensive stroke care is an interdisciplinary challenge. Close collaboration of cardiologists and stroke physicians is critical to ensure optimum utilisation of short- and long-term care and preventive measures in patients with stroke. Risk factor management is an important strategy that requires cardiologic involvement for primary and secondary stroke prevention. Treatment of stroke generally is led by stroke physicians, yet cardiologists need to be integrated care providers in stroke units to address all cardiovascular aspects of acute stroke care, including arrhythmia management, blood pressure control, elevated levels of cardiac troponins, valvular disease/endocarditis, and the general management of cardiovascular comorbidities. Despite substantial progress in stroke research and clinical care has been achieved, relevant gaps in clinical evidence remain and cause uncertainties in best practice for treatment and prevention of stroke. The Cardiovascular Round Table of the European Society of Cardiology together with the European Society of Cardiology Council on Stroke in cooperation with the European Stroke Organisation and partners from related scientific societies, regulatory authorities and industry conveyed a two-day workshop to discuss current and emerging concepts and apparent gaps in stroke care, including risk factor management, acute diagnostics, treatments and complications, and operational/logistic issues for health care systems and integrated networks. Joint initiatives of cardiologists and stroke physicians are needed in research and clinical care to target unresolved interdisciplinary problems and to promote the best possible outcomes for patients with stroke

    A Rare Case of Congenital Malformation of the Nose (Appendix Septi Congenita)

    No full text
    corecore