631 research outputs found

    Excitonic phase transition in the extended three-dimensional Falicov-Kimball model

    Get PDF
    We study the excitonic phase transition in a system of the conduction band electrons and valence band holes described by the three-dimensional (3D) extended Falicov-Kimball (EFKM) model with the tunable Coulomb interaction UU between both species. By lowering the temperature, the electron-hole system may become unstable with respect to the formation of the excitons, i.e, electron-hole pairs at temperature T=TΔT=T_{\Delta}, exhibiting a gap Δ\Delta in the particle excitation spectrum. To this end we implement the functional integral formulation of the EFKM, where the Coulomb interaction term is expressed in terms of U(1) phase variables conjugate to the local particle number, providing a useful representation of strongly correlated system. The effective action formalism allows us to formulate a problem in the phase-only action in the form of the quantum rotor model and to obtain analytical formula for the critical lines and other quantities of physical interest like charge gap, chemical potential and the correlation length.Comment: 27 pages, 15 figures (in the arXive version), 37 pages and 15 figures (in the published version

    Effective pairing interaction in the two-dimensional Hubbard model within a spin rotationally invariant approach

    Full text link
    We implement the rotationally-invariant formulation of the two-dimensional Hubbard model, with nearest-neighbors hopping tt, which allows for the analytical study of the system in the low-energy limit. Both U(1) and SU(2) gauge transformations are used to factorize the charge and spin contributions to the original electron operator in terms of the corresponding gauge fields. The Hubbard Coulomb energy UU term is then expressed in terms of quantum phase variables conjugate to the local charge and variable spin-quantization axis, providing a useful representation of strongly correlated systems. It is shown that these gauge fields play a similar role as phonons in the BCS theory: they act as the "glue" for fermion pairing. By tracing out gauge degrees of freedom, the form of paired states is established and the strength of the pairing potential is determined. It is found that the attractive pairing potential in the effective low-energy fermionic action is non-zero in a rather narrow range of U/tU/t.Comment: 12 pages, 1 figur

    The conduction pathway of potassium channels is water free under physiological conditions.

    No full text
    Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism

    Temperature-doping phase diagram of layered superconductors

    Full text link
    The superconducting properties of a layered system are analyzed for the cases of zero- and non-zero angular momentum of the pairs. The effective thermodynamic potential for the quasi-2D XY-model for the gradients of the phase of the order parameter is derived from the microscopic superconducting Hamiltonian. The dependence of the superconducting critical temperature T_c on doping, or carrier density, is studied at different values of coupling and inter-layer hopping. It is shown that the critical temperature T_c of the layered system can be lower than the critical temperature of the two-dimensional Berezinskii-Kosterlitz-Thouless transition T_BKT at some values of the model parameters, contrary to the case when the parameters of the XY-model do not depend on the microscopic Hamiltonian parameters.Comment: To be published in Phys. Rev.

    Analysis of time-profiles with in-beam PET monitoring in charged particle therapy

    Full text link
    Background: Treatment verification with PET imaging in charged particle therapy is conventionally done by comparing measurements of spatial distributions with Monte Carlo (MC) predictions. However, decay curves can provide additional independent information about the treatment and the irradiated tissue. Most studies performed so far focus on long time intervals. Here we investigate the reliability of MC predictions of space and time (decay rate) profiles shortly after irradiation, and we show how the decay rates can give an indication about the elements of which the phantom is made up. Methods and Materials: Various phantoms were irradiated in clinical and near-clinical conditions at the Cyclotron Centre of the Bronowice proton therapy centre. PET data were acquired with a planar 16x16 cm2^2 PET system. MC simulations of particle interactions and photon propagation in the phantoms were performed using the FLUKA code. The analysis included a comparison between experimental data and MC simulations of space and time profiles, as well as a fitting procedure to obtain the various isotope contributions in the phantoms. Results and conclusions: There was a good agreement between data and MC predictions in 1-dimensional space and decay rate distributions. The fractions of 11^{11}C, 15^{15}O and 10^{10}C that were obtained by fitting the decay rates with multiple simple exponentials generally agreed well with the MC expectations. We found a small excess of 10^{10}C in data compared to what was predicted in MC, which was clear especially in the PE phantom.Comment: 9 pages, 5 figures, 1 table. Proceedings of the 20th International Workshop on Radiation Imaging Detectors (iWorid2018), 24-28 June 2018, Sundsvall, Swede

    Theory of a spherical quantum rotors model: low--temperature regime and finite-size scaling

    Full text link
    The quantum rotors model can be regarded as an effective model for the low-temperature behavior of the quantum Heisenberg antiferromagnets. Here, we consider a dd-dimensional model in the spherical approximation confined to a general geometry of the form Ldd×d×LτzL^{d-d'}\times\infty^{d'}\times L_{\tau}^{z} ( LL-linear space size and LτL_{\tau}-temporal size) and subjected to periodic boundary conditions. Due to the remarkable opportunity it offers for rigorous study of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phenomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying the critical behavior of the model. For different dimensions 1<d<31<d<3 and 0dd0\leq d'\leq d a detailed analysis, in terms of the special functions of classical mathematics, for the susceptibility and the equation of state is given. Particular attention is paid to the two-dimensional case.Comment: 33pages, revtex+epsf, 3ps figures included submitted to PR

    Time reparametrization group and the long time behaviour in quantum glassy systems

    Full text link
    We study the long time dynamics of a quantum version of the Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical equations have a parallel with renormalization group transformations, and within this language the long time behaviour of this model is controlled by a reparametrization group (Rp_pG) fixed point of the classical dynamics. The irrelevance of the quantum terms in the dynamical equations in the aging regime explains the classical nature of the violation of the fluctuation-dissipation theorem.Comment: 4 page

    Quantum phase transitions and thermodynamic properties in highly anisotropic magnets

    Full text link
    The systems exhibiting quantum phase transitions (QPT) are investigated within the Ising model in the transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence between parameters of these models and of quantum phi^4 model is established. A scaling analysis is performed for the ground-state properties. The influence of the external longitudinal magnetic field on the ground-state properties is investigated, and the corresponding magnetic susceptibility is calculated. Finite-temperature properties are considered with the use of the scaling analysis for the effective classical model proposed by Sachdev. Analytical results for the ordering temperature and temperature dependences of the magnetization and energy gap are obtained in the case of a small ground-state moment. The forms of dependences of observable quantities on the bare splitting (or magnetic field) and renormalized splitting turn out to be different. A comparison with numerical calculations and experimental data on systems demonstrating magnetic and structural transitions (e.g., into singlet state) is performed.Comment: 46 pages, RevTeX, 6 figure

    Interaction-induced Bose Metal in 2D

    Full text link
    We show here that the regularization of the conductivity resulting from the bosonic interactions on the `insulating' (quantum disordered) side of an insulator-superconductor transition in 2D gives rise to a metal with a finite conductivity, σ=(2/π)4e2/h\sigma =(2/\pi) 4 e^2/h, as temperature tends to zero. The Bose metal is stable to weak disorder and hence represents a concrete example of an interaction-induced metallic phase. Phenomenological inclusion of dissipation reinstates the anticipated insulating behaviour in the quantum-disordered regime. Hence, we conclude that the traditionally-studied insulator-superconductor transition, which is driven solely by quantum fluctuations, corresponds to a superconductor-metal transition. The possible relationship to experiments on superconducting thin films in which a low-temperature metallic phase has been observed is discussed.Comment: A figure has been added and the physics has been clarified. To appear in PR
    corecore