1,264 research outputs found

    Nuclear-size self-energy and vacuum-polarization corrections to the bound-electron g factor

    Full text link
    The finite nuclear-size effect on the leading bound-electron g factor and the one-loop QED corrections to the bound-electron g factor is investigated for the ground state of hydrogen-like ions. The calculation is performed to all orders in the nuclear binding strength parameter Z\alpha\ (where Z is the nuclear charge and \alpha\ is the fine structure constant) and for the Fermi model of the nuclear charge distribution. In the result, theoretical predictions for the isotope shift of the 1s bound-electron g factor are obtained, which can be used for the determination of the difference of nuclear charge radii from experimental values of the bound-electron g factors for different isotopes

    QED calculation of the nuclear magnetic shielding for hydrogen-like ions

    Full text link
    We report an ab initio calculation of the shielding of the nuclear magnetic moment by the bound electron in hydrogen-like ions. This investigation takes into account several effects that have not been calculated before (electron self-energy, vacuum polarization, nuclear magnetization distribution), thus bringing the theory to the point where further progress is impeded by the uncertainty due to nuclear-structure effects. The QED corrections are calculated to all orders in the nuclear binding strength parameter and, independently, to the leading order in the expansion in this parameter. The results obtained lay the ground for the high-precision determination of nuclear magnetic dipole moments from measurements of the g-factor of hydrogen-like ions

    Electron-correlation effects in the gg-factor of light Li-like ions

    Full text link
    We investigate electron-correlation effects in the gg-factor of the ground state of Li-like ions. Our calculations are performed within the nonrelativistic quantum electrodynamics (NRQED) expansion up to two leading orders in the fine-structure constant α\alpha, α2\alpha^2 and α3\alpha^3. The dependence of the NRQED results on the nuclear charge number ZZ is studied and the individual 1/Z1/Z-expansion contributions are identified. Combining the obtained data with the results of the all-order (in ZαZ\alpha) calculations performed within the 1/Z1/Z expansion, we derive the unified theoretical predictions for the gg-factor of light Li-like ions.Comment: 9 pages, 4 table

    QED theory of the nuclear magnetic shielding in hydrogen-like ions

    Full text link
    The shielding of the nuclear magnetic moment by the bound electron in hydrogen-like ions is calculated ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently, to the first order in the expansion in this parameter. The results obtained lay the basis for the high-precision determination of nuclear magnetic dipole moments from measurements of the g-factor of hydrogen-like ions.Comment: 4 pages, 2 tables, 2 figure

    Two-photon-exchange corrections to the g factor of Li-like ions

    Get PDF
    We report calculations of QED corrections to the gg factor of Li-like ions induced by the exchange of two virtual photons between the electrons. The calculations are performed within QED theory to all orders in the nuclear binding strength parameter ZαZ\alpha, where ZZ is the nuclear charge number and α\alpha is the fine-structure constant. In the region of low nuclear charges we compare results from three different methods: QED, relativistic many-body perturbation theory, and nonrelativistic QED. All three methods are shown to yield consistent results. With our calculations we improve the accuracy of the theoretical predictions of the gg factor of the ground state of Li-like carbon and oxygen by about an order of magnitude. Our theoretical results agree with those from previous calculations but differ by 3-4 standard deviations from the experimental results available for silicon and calcium

    Radiation Reaction Effects on Electron Nonlinear Dynamics and Ion Acceleration in Laser-solid Interaction

    Full text link
    Radiation Reaction (RR) effects in the interaction of an ultra-intense laser pulse with a thin plasma foil are investigated analytically and by two-dimensional (2D3P) Particle-In-Cell (PIC) simulations. It is found that the radiation reaction force leads to a significant electron cooling and to an increased spatial bunching of both electrons and ions. A fully relativistic kinetic equation including RR effects is discussed and it is shown that RR leads to a contraction of the available phase space volume. The results of our PIC simulations are in qualitative agreement with the predictions of the kinetic theory

    Access to improve the muon mass and magnetic moment anomaly via the bound-muon gg factor

    Full text link
    A theoretical description of the gg factor of a muon bound in a nuclear potential is presented. One-loop self-energy and multi-loop vacuum polarization corrections are calculated, taking into account the interaction with the binding potential exactly. Nuclear effects on the bound-muon gg factor are also evaluated. We put forward the measurement of the bound-muon gg factor via the continuous Stern-Gerlach effect as an independent means to determine the free muons magnetic moment anomaly and mass. The scheme presented enables to increase the accuracy of the mass by more than an order of magnitude
    • …
    corecore