1,537 research outputs found

    Theory of Macroscopic Quantum Tunneling in High-T_c c-Axis Josephson Junctions

    Full text link
    We study macroscopic quantum tunneling (MQT) in c-axis twist Josephson junctions made of high-T_c superconductors in order to clarify the influence of the anisotropic order parameter symmetry (OPS) on MQT. The dependence of the MQT rate on the twist angle γ\gamma about the c-axis is calculated by using the functional integral and the bounce method. Due to the d-wave OPS, the γ\gamma dependence of standard deviation of the switching current distribution and the crossover temperature from thermal activation to MQT are found to be given by cos2γ\cos2\gamma and cos2γ\sqrt{\cos2\gamma}, respectively. We also show that a dissipative effect resulting from the nodal quasiparticle excitation on MQT is negligibly small, which is consistent with recent MQT experiments using Bi2{}_2Sr2{}_2CaCu2{}_2O8+δ{}_{8 + \delta} intrinsic junctions. These results indicate that MQT in c-axis twist junctions becomes a useful experimental tool for testing the OPS of high-T_c materials at low temperature, and suggest high potential of such junctions for qubit applications.Comment: 15 pages, 8 figures, 1 tabl

    Orbital entanglement and violation of Bell inequalities in mesoscopic conductors

    Full text link
    We propose a spin-independent scheme to generate and detect two-particle entanglement in a mesoscopic normal-superconductor system. A superconductor, weakly coupled to the normal conductor, generates an orbitally entangled state by injecting pairs of electrons into different leads of the normal conductor. The entanglement is detected via violation of a Bell inequality, formulated in terms of zero-frequency current cross-correlators. It is shown that the Bell inequality can be violated for arbitrary strong dephasing in the normal conductor.Comment: 4 pages, 2 figure

    Conductance Increase by Electron-Phonon Interaction in Quantum Wires

    Full text link
    We investigate the influence of electron-phonon interactions on the DC-conductance Γ\Gamma of a quantum wire in the limit of one occupied subband. At zero temperature, a Tomonaga-Luttinger-like renormalization of Γ\Gamma to a value slightly larger than 2e2/h2e^{2}/h is calculated for a realistic quantum wire model.Comment: 12 pages RevTeX, no figure. Appears in Phys. Rev.

    Dephasing time of disordered two-dimensional electron gas in modulated magnetic fields

    Full text link
    The dephasing time of disordered two-dimensional electron gas in a modulated magnetic field is studied. It is shown that in the weak inhomogeneity limit, the dephasing rate is proportional to the field amplitude, while in strong inhomogeneity limit the dependence is quadratic. It is demonstrated that the origin of the dependence of dephasing time on field amplitude lies in the nature of corresponding single-particle motion. A semiclassical Monte Carlo algorithm is developed to study the dephasing time, which is of qualitative nature but efficient in uncovering the dependence of dephasing time on field amplitude for arbitrarily complicated magnetic-field modulation. Computer simulations support analytical results. The crossover from linear to quadratic dependence is then generalized to the situation with magnetic field modulated periodically in one direction with zero mean, and it is argued that this crossover can be expected for a large class of modulated magnetic fields.Comment: 8 pages, 2 figure

    Effect of Interactions on the Admittance of Ballistic Wires

    Full text link
    A self-consistent theory of the admittance of a perfect ballistic, locally charge neutral wire is proposed. Compared to a non-interacting theory, screening effects drastically change the frequency behavior of the conductance. In the single-channel case the frequency dependence of the admittance is monotonic, while for two or more channels collective interchannel excitations lead to resonant structures in the admittance. The imaginary part of the admittance is typically positive, but can become negative near resonances.Comment: Presentation considerably modified; the results are unchanged. 4 pages, 2 figures .eps-format include

    Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles

    Get PDF
    We present a microscopic model for surface-enhanced Raman scattering (SERS) from molecules adsorbed on small noble-metal nanoparticles. In the absence of direct overlap of molecular orbitals and electronic states in the metal, the main enhancement source is the strong electric field of the surface plasmon resonance in a nanoparticle acting on a molecule near the surface. In small particles, the electromagnetic enhancement is strongly modified by quantum-size effects. We show that, in nanometer-sized particles, SERS magnitude is determined by a competition between several quantum-size effects such as the Landau damping of surface plasmon resonance and reduced screening near the nanoparticle surface. Using time-dependent local density approximation, we calculate spatial distribution of local fields near the surface and enhancement factor for different nanoparticles sizes.Comment: 8 pages, 6 figures. Considerably extended final versio

    Energetics of metal slabs and clusters: the rectangle-box model

    Full text link
    An expansion of energy characteristics of wide thin slab of thickness L in power of 1/L is constructed using the free-electron approximation and the model of a potential well of finite depth. Accuracy of results in each order of the expansion is analyzed. Size dependences of the work function and electronic elastic force for Au and Na slabs are calculated. It is concluded that the work function of low-dimensional metal structure is always smaller that of semi-infinite metal sample. A mechanism for the Coulomb instability of charged metal clusters, different from Rayleigh's one, is discussed. The two-component model of a metallic cluster yields the different critical sizes depending on a kind of charging particles (electrons or ions). For the cuboid clusters, the electronic spectrum quantization is taken into account. The calculated critical sizes of Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental data. A qualitative explanation is suggested for the Coulomb explosion of positively charged Na_{\N}^{n+} clusters at 3<n<5.Comment: 11 pages, 6 figures, 1 tabl

    Weak Field Magnetoresistance in Quasi-One-Dimensional Systems

    Full text link
    Theoretical studies are presented on weak localization effects and magnetoresistance in quasi-one-dimensional systems with open Fermi surfaces. Based on the Wigner representation, the magnetoresistance in the region of weak field has been studied for five possible configurations of current and field with respect to the one-dimensional axis. It has been indicated that the anisotropy and its temperature dependences of the magnetoresistance will give information on the degree of one-dimensionality and the phase relaxation time.Comment: pages 11, LaTeX, 5 figures, uses jpsj.sty. To be published in J. Phys. Soc. Jpn. (Vol.67(1998) No.4); Added some references and a Note at Feb. 13 199

    Two-particle Aharonov-Bohm effect and Entanglement in the electronic Hanbury Brown Twiss setup

    Full text link
    We analyze a Hanbury Brown Twiss geometry in which particles are injected from two independent sources into a mesoscopic electrical conductor. The set-up has the property that all partial waves end in different reservoirs without generating any single particle interference. There is no single particle Aharonov-Bohm effect. However, exchange effects lead to two-particle Aharonov-Bohm oscillations in current correlations. We demonstrate that the two-particle Aharonov-Bohm effect is connected to orbital entanglement which can be used for violation of a Bell Inequality.Comment: 4 pages, 2 figures, discussion of postselected electron-electron entanglement adde
    corecore