42 research outputs found
ANALYTICAL SOLUTION OF THE ASSOCIATIVE MEAN SPHERICAL APPROXIMATION FOR THE ION-DIPOLE MODEL
A simple electrolyte in a polar solvent is modelled by a mixture of polar hard
spheres and equal diameter charged hard spheres with the possibility of
ionic dimerization. The analytical solution of the associative mean spherical
approximation (AMSA) for this model is derived to its full extent. Explicit
expressions for pair correlation functions and dielectric constant in terms
of the AMSA are established. Some numerical calculations illustrate the
role of ionic association.Простий електроліт моделюється в полярному розчиннику сумішшю
полярних твердих сфер і однакового розміру заряджених твердих
сфер із можливою іонною димеризацією. Подано аналітичний розв’язок асоціативного середньо-сферичного наближення для цієї моделі
(АССН). Приводяться точні вирази для парних кореляційних функцій і
діелектричної константи в термінах АССН. Роль іонної асоціативності
ілюструється числовими результатами
Analytical solution of the associative mean spherical approximation for the ion-dipole model
A simple electrolyte in a polar solvent is modelled by a mixture of polar hard
spheres and equal diameter charged hard spheres with the possibility of
ionic dimerization. The analytical solution of the associative mean spherical
approximation (AMSA) for this model is derived to its full extent. Explicit
expressions for pair correlation functions and dielectric constant in terms
of the AMSA are established. Some numerical calculations illustrate the
role of ionic association.Простий електроліт моделюється в полярному розчиннику сумішшю
полярних твердих сфер і однакового розміру заряджених твердих
сфер із можливою іонною димеризацією. Подано аналітичний розв’язок асоціативного середньо-сферичного наближення для цієї моделі
(АССН). Приводяться точні вирази для парних кореляційних функцій і
діелектричної константи в термінах АССН. Роль іонної асоціативності
ілюструється числовими результатами
Polynomials for Crystal Frameworks and the Rigid Unit Mode Spectrum
To each discrete translationally periodic bar-joint framework \C in \bR^d
we associate a matrix-valued function \Phi_\C(z) defined on the d-torus. The
rigid unit mode spectrum \Omega(\C) of \C is defined in terms of the
multi-phases of phase-periodic infinitesimal flexes and is shown to correspond
to the singular points of the function z \to \rank \Phi_\C(z) and also to the
set of wave vectors of harmonic excitations which have vanishing energy in the
long wavelength limit. To a crystal framework in Maxwell counting equilibrium,
which corresponds to \Phi_\C(z) being square, the determinant of \Phi_\C(z)
gives rise to a unique multi-variable polynomial p_\C(z_1,\dots,z_d). For
ideal zeolites the algebraic variety of zeros of p_\C(z) on the d-torus
coincides with the RUM spectrum. The matrix function is related to other
aspects of idealised framework rigidity and flexibility and in particular leads
to an explicit formula for the number of supercell-periodic floppy modes. In
the case of certain zeolite frameworks in dimensions 2 and 3 direct proofs are
given to show the maximal floppy mode property (order ). In particular this
is the case for the cubic symmetry sodalite framework and some other idealised
zeolites.Comment: Final version with new examples and figures, and with clearer
streamlined proof
Thermodynamics and Dynamics of a Monoatomic Glass-Former. Constant Pressure and Constant Volume Behavior
We report constant-volume and constant-pressure simulations of the
thermodynamic and dynamic properties of the low-temperature liquid and
crystalline phases of the modified Stillinger-Weber (mSW) model. We have found
an approximately linear increase of the effective Gaussian width of the
distribution of inherent structures. This effect comes from non-Gaussianity of
the landscape and is consistent with the predictions of the Gaussian
excitations model representing the thermodynamics of the configurational
manifold as an ensemble of excitations, each carrying an excitation entropy.
The mSW model provides us with both the configurational and excess entropies,
with the difference mostly attributed to vibrational anharmonicity. We
therefore can address the distinction between the excess thermodynamic
quantities often used in the Adam-Gibbs (AG) equation. We find a new break in
the slope of the constant pressure AG plot when the excess entropy is used in
the AG equation. The simulation diffusivity data are equally well fitted by
applying a new equation, derived within the Gaussian excitations model, that
emphasizes enthalpy over entropy as the thermodynamic control variable for
transport in viscous liquids.Comment: 14 pages, 14 figure
Density of mechanisms within the flexibility window of zeolites
By treating idealized zeolite frameworks as periodic mechanical trusses, we
show that the number of flexible folding mechanisms in zeolite frameworks is
strongly peaked at the minimum density end of their flexibility window. 25 of
the 197 known zeolite frameworks exhibit an extensive flexibility, where the
number of unique mechanisms increases linearly with the volume when long
wavelength mechanisms are included. Extensively flexible frameworks therefore
have a maximum in configurational entropy, as large crystals, at their lowest
density. Most real zeolites do not exhibit extensive flexibility, suggesting
that surface and edge mechanisms are important, likely during the nucleation
and growth stage. The prevalence of flexibility in real zeolites suggests that,
in addition to low framework energy, it is an important criterion when
searching large databases of hypothetical zeolites for potentially useful
realizable structures.Comment: 11 pages, 3 figure
Theory of solvation in polar nematics
We develop a linear response theory of solvation of ionic and dipolar solutes
in anisotropic, axially symmetric polar solvents. The theory is applied to
solvation in polar nematic liquid crystals. The formal theory constructs the
solvation response function from projections of the solvent dipolar
susceptibility on rotational invariants. These projections are obtained from
Monte Carlo simulations of a fluid of dipolar spherocylinders which can exist
both in the isotropic and nematic phase. Based on the properties of the solvent
susceptibility from simulations and the formal solution, we have obtained a
formula for the solvation free energy which incorporates experimentally
available properties of nematics and the length of correlation between the
dipoles in the liquid crystal. Illustrative calculations are presented for the
Stokes shift and Stokes shift correlation function of coumarin-153 in
4-n-pentyl-4'-cyanobiphenyl (5CB) and 4,4-n-heptyl-cyanopiphenyl (7CB) solvents
as a function of temperature in both the nematic and isotropic phase.Comment: 19 pages, 9 figure