6,930 research outputs found

    Study protocol for a randomised controlled trial of electronic cigarettes versus nicotine patch for smoking cessation

    Get PDF
    PMCID: PMC3602285This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Noncommutative symmetric functions and Laplace operators for classical Lie algebras

    Get PDF
    New systems of Laplace (Casimir) operators for the orthogonal and symplectic Lie algebras are constructed. The operators are expressed in terms of paths in graphs related to matrices formed by the generators of these Lie algebras with the use of some properties of the noncommutative symmetric functions associated with a matrix. The decomposition of the Sklyanin determinant into a product of quasi-determinants play the main role in the construction. Analogous decomposition for the quantum determinant provides an alternative proof of the known construction for the Lie algebra gl(N).Comment: 25 page

    Antimatter propulsion, status and prospects

    Get PDF
    The use of advanced propulsion techniques must be considered if the currently envisioned launch date of the manned Mars mission were delayed until 2020 or later. Within the next thirty years, technological advances may allow such methods as beaming power to the ship, inertial-confinement fusion, or mass-conversion of antiprotons to become feasible. A propulsion system with an ISP of around 5000 s would allow the currently envisioned mission module to fly to Mars in 3 months and would require about one million pounds to be assembled in Earth orbit. Of the possible methods to achieve this, the antiproton mass-conversion reaction offers the highest potential, the greatest problems, and the most fascination. Increasing the production rates of antiprotons is a high priority task at facilities around the world. The application of antiprotons to propulsion requires the coupling of the energy released in the mass-conversion reaction to thrust-producing mechanisms. Recent proposals entail using the antiprotons to produce inertial confinement fusion or to produce negative muons which can catalyze fusion. By increasing the energy released per antiproton, the effective cost, (dollars/joule) can be reduced. These proposals and other areas of research can be investigated now. These short term results will be important in assessing the long range feasibility of an antiproton powered engine

    The Schwinger SU(3) construction - I: Multiplicity problem and relation to induced representations

    Full text link
    The Schwinger oscillator operator representation of SU(3) is analysed with particular reference to the problem of multiplicity of irreducible representations. It is shown that with the use of an Sp(2,R)Sp(2,R) unitary representation commuting with the SU(3) representation, the infinity of occurrences of each SU(3) irreducible representation can be handled in complete detail. A natural `generating representation' for SU(3), containing each irreducible representation exactly once, is identified within a subspace of the Schwinger construction; and this is shown to be equivalent to an induced representation of SU(3).Comment: Latex, 25 page

    BRST quantization of matrix models with constraints and two-dimensional Yang-Mills theory on the cylinder

    Get PDF
    BRST quantization of the one-dimensional constrained matrix model which describes two-dimensional Yang-Mills theory on the cylinder is performed. Classical and quantum BRST generators and BRST-invariant hamiltonians are constructed. Evolution operator is expressed in terms of BRST path integral. Advantages of the BRST quantization over the reduced phase space approach leading to the theory of NN free fermions are discussed.Comment: 8 page

    Radiation reaction and renormalization in classical electrodynamics of point particle in any dimension

    Get PDF
    The effective equations of motion for a point charged particle taking account of radiation reaction are considered in various space-time dimensions. The divergencies steaming from the pointness of the particle are studied and the effective renormalization procedure is proposed encompassing uniformly the cases of all even dimensions. It is shown that in any dimension the classical electrodynamics is a renormalizable theory if not multiplicatively beyond d=4. For the cases of three and six dimensions the covariant analogs of the Lorentz-Dirac equation are explicitly derived.Comment: minor changes in concluding section, misprints corrected, LaTeX2e, 15 page

    Fibre Bundles and Generalised Dimensional Reduction

    Get PDF
    We study some geometrical and topological aspects of the generalised dimensional reduction of supergravities in D=11 and D=10 dimensions, which give rise to massive theories in lower dimensions. In these reductions, a global symmetry is used in order to allow some of the fields to have a non-trivial dependence on the compactifying coordinates. Global consistency in the internal space imposes topological restrictions on the parameters of the compactification as well as the structure of the space itself. Examples that we consider include the generalised reduction of the type IIA and type IIB theories on a circle, and also the massive ten-dimensional theory obtained by the generalised reduction of D=11 supergravity.Comment: 23 pages, Late

    Fast magnetoacoustic waves in a randomly structured solar corona

    Get PDF
    The propagation of fast magnetoacoustic waves in a randomly structured solar corona is considered in the linear and cold plasma limits. The random field is assumed to be static and associated with plasma density inhomogeneities only. A transcendental dispersion relation for the fast magnetoacoustic waves which propagate perpendicularly to the magnetic field is derived in the weak random field approximation. It is shown analytically that the fast magnetosonic waves experience acceleration, attenuation, and dispersion in comparison to the homogeneous case. These analytical findings are essentially confirmed by numerical simulations for a wide-spectrum pulse, except that the waves were found decelerated. It is concluded that the coronal Moreton waves can be applied to MHD seismology of the solar corona

    (4,4) superfield supergravity

    Full text link
    We present the N=4 superspace constraints for the two-dimensional (2d) off-shell (4,4) supergravity with the superfield strengths expressed in terms of a (4,4) twisted (scalar) multiplet TM-I, as well as the corresponding component results, in a form suitable for applications. The constraints are shown to be invariant under the N=4 super-Weyl transformations, whose N=4 superfield parameters form another twisted (scalar) multiplet TM-II. To solve the constraints, we propose the Ansatz which makes the N=4 superconformal flatness of the N=4 supergravity curved superspace manifest. The locally (4,4) supersymmetric TM-I matter couplings, with the potential terms resulting from spontaneous supersymmetry breaking, are constructed. We also find the full (4,4) superconformally invariant (improved) TM-II matter action. The latter can be extended to the (4,4) locally supersymmetric Liouville action which is suitable for describing (4,4) supersymmetric non-critical strings.Comment: 32 pages, LaTeX, revised version (one reference added, and one Appendix is reduced
    corecore