78 research outputs found
Research study of some RAM antennas Final report, 18 Nov. 1964 - 18 Jun. 1965
Input impedance and radiation pattern determinations for cylindrical gap, waveguide excited and circular waveguide slot antenna array
Cross-Sectional Comparison of Health-Span Phenotypes in Young versus Geriatric Marmosets
The development of the marmoset as a translational model for healthspan and lifespan studies relies on the characterization of health parameters in young and geriatric marmosets. This crossâsectional study examined health phenotypes in marmosets for five domains of interest for human health and aging: mobility, cognition, metabolism, homeostasis, and immune function. Geriatric marmosets were found to have significant executive function impairment when compared to young animals. While geriatric animals did not show gross abnormalities in mobility and measures of locomotion, their types of movement were altered from young animals. Geriatric marmosets had alterations in cardiac function, with significantly increased mean arterial pressures; metabolism, with significantly lower VO2; and suppressed immune function. Further, this study sought to characterize and describe histopathology for both young and geriatric healthy marmosets. Overall this study provides a characterization of health parameters for young and geriatric marmosets which will greatly enhance future aging and interventional testing in marmosets
Molecular Approaches for the Validation of the Baboon as a Nonhuman Primate Model for the Study of Zika Virus Infection
Nonhuman primates (NHP) are particularly important for modeling infections with viruses that do not naturally replicate in rodent cells. Zika virus (ZIKV) has been responsible for sporadic epidemics, but in 2015 a disseminated outbreak of ZIKV resulted in the World Health Organization declaring it a global health emergency. Since the advent of this last epidemic, several NHP species, including the baboon, have been utilized for modeling and understanding the complications of ZIKV infection in humans; several health issues related to the outcome of infection have not been resolved yet and require further investigation. This study was designed to validate, in baboons, the molecular signatures that have previously been identified in ZIKV-infected humans and macaque models. We performed a comprehensive molecular analysis of baboons during acute ZIKV infection, including flow cytometry, cytokine, immunological, and transcriptomic analyses. We show here that, similar to most human cases, ZIKV infection of male baboons tends to be subclinical, but is associated with a rapid and transient antiviral interferon-based response signature that induces a detectable humoral and cell-mediated immune response. This immunity against the virus protects animals from challenge with a divergent ZIKV strain, as evidenced by undetectable viremia but clear anamnestic responses. These results provide additional support for the use of baboons as an alternative animal model to macaques and validate omic techniques that could help identify the molecular basis of complications associated with ZIKV infections in humans
Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus
Zika virus (ZIKV) is a re-emerging virus that has recently spread into dengue virus (DENV) endemic regions and cross-reactive antibodies (Abs) could potentially affect ZIKV pathogenesis. Using DENV-immune serum, it has been shown in vitro that antibody-dependent enhancement (ADE) of ZIKV infection can occur. Here we study the effects of pre-existing DENV immunity on ZIKV infection in vivo. We infect two cohorts of rhesus macaques with ZIKV; one cohort has been exposed to DENV 2.8 years earlier and a second control cohort is naĂŻve to flaviviral infection. Our results, while confirming ADE in vitro, suggest that pre-existing DENV immunity does not result in more severe ZIKV disease. Rather our results show a reduction in the number of days of ZIKV viremia compared to naĂŻve macaques and that the previous exposure to DENV may result in modulation of the immune response without resulting in enhancement of ZIKV pathogenesis
Time elapsed between Zika and dengue virus infections affects antibody and T cell responses
Zika virus (ZIKV) and dengue virus (DENV) are co-endemic in many parts of the world, but the impact of ZIKV infection on subsequent DENV infection is not well understood. Here we show in rhesus macaques that the time elapsed after ZIKV infection affects the immune response to DENV infection. We show that previous ZIKV exposure increases the magnitude of the antibody and T cell responses against DENV. The time interval between ZIKV and subsequent DENV infection further affects the immune response. A mid-convalescent period of 10 months after ZIKV infection results in higher and more durable antibody and T cell responses to DENV infection than a short period of 2 months. In contrast, previous ZIKV infection does not affect DENV viremia or pro-inflammatory status. Collectively, we find no evidence of a detrimental effect of ZIKV immunity in a subsequent DENV infection. This supports the implementation of ZIKV vaccines that could also boost immunity against future DENV epidemics
Identification of Novel α-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method
Parkinsonâs disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn1â140) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn1â139 and Ac-α-syn1â103) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA)
Nitrated α-Synuclein Induces the Loss of Dopaminergic Neurons in the Substantia Nigra of Rats
BACKGROUND: The pathology of Parkinson's disease (PD) is characterized by the degeneration of the nigrostriatal dopaminergic pathway, as well as the formation of intraneuronal inclusions known as Lewy bodies and Lewy neurites in the substantia nigra. Accumulations of nitrated alpha-synuclein are demonstrated in the signature inclusions of Parkinson's disease. However, whether the nitration of alpha-synuclein is relevant to the pathogenesis of PD is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, effect of nitrated alpha-synuclein to dopaminergic (DA) neurons was determined by delivering nitrated recombinant TAT-alpha-synuclein intracellular. We provide evidence to show that the nitrated alpha-synuclein was toxic to cultured dopaminergic SHSY-5Y neurons and primary mesencephalic DA neurons to a much greater degree than unnitrated alpha-synuclein. Moreover, we show that administration of nitrated alpha-synuclein to the substantia nigra pars compacta of rats caused severe reductions in the number of DA neurons therein, and led to the down-regulation of D(2)R in the striatum in vivo. Furthermore, when administered to the substantia nigra of rats, nitrated alpha-synuclein caused PD-like motor dysfunctions, such as reduced locomotion and motor asymmetry, however unmodified alpha-synuclein had significantly less severe behavioral effects. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that alpha-synuclein, principally in its nitrated form, induce DA neuron death and may be a major factor in the etiology of PD
Synphilin-1 Enhances α-Synuclein Aggregation in Yeast and Contributes to Cellular Stress and Cell Death in a Sir2-Dependent Manner
© 2010 BĂŒttner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Parkinsonâs disease is characterized by the presence of cytoplasmic inclusions, known as Lewy bodies, containing both aggregated α-synuclein and its interaction partner, synphilin-1. While synphilin-1 is known to accelerate inclusion formation by α-synuclein in mammalian cells, its effect on cytotoxicity remains elusive.
Methodology/Principal Findings: We expressed wild-type synphilin-1 or its R621C mutant either alone or in combination with α-synuclein in the yeast Saccharomyces cerevisiae and monitored the intracellular localization and inclusion formation of the proteins as well as the repercussions on growth, oxidative stress and cell death. We found that wild-type and mutant synphilin-1 formed inclusions and accelerated inclusion formation by α-synuclein in yeast cells, the latter being correlated to enhanced phosphorylation of serine-129. Synphilin-1 inclusions co-localized with lipid droplets and endomembranes. Consistently, we found that wild-type and mutant synphilin-1 interacts with detergent-resistant membrane domains, known as lipid rafts. The expression of synphilin-1 did not incite a marked growth defect in exponential cultures, which is likely due to the formation of aggresomes and the retrograde transport of inclusions from the daughter cells back to the mother cells. However, when the cultures approached stationary phase and during subsequent ageing of the yeast cells, both wild-type and mutant synphilin-1 reduced survival and triggered apoptotic and necrotic cell death, albeit to a different extent. Most interestingly, synphilin-1 did not trigger cytotoxicity in ageing cells lacking the sirtuin Sir2. This indicates that the expression of synphilin-1 in wild-type cells causes the deregulation of Sir2-dependent processes, such as the maintenance of the autophagic flux in response to nutrient starvation. Conclusions/Significance: Our findings demonstrate that wild-type and mutant synphilin-1 are lipid raft interacting proteins that form inclusions and accelerate inclusion formation of α-synuclein when expressed in yeast. Synphilin-1 thereby induces cytotoxicity, an effect most pronounced for the wild-type protein and mediated via Sir2-dependent processes.This work was supported by grants from IWT-Vlaanderen (SBO NEURO-TARGET), the K.U.Leuven Research Fund (K.U.Leuven BOF-IOF) and K.U.Leuven R&D to JW, a Tournesol grant from Egide (Partenariat Hubert Curien) in France in collaboration with the Flemish Ministry of Education and the Fund of Scientific Research of Flanders (FWO) in Belgium to JW, MCG and LB, a shared PhD fellowship of the EU-Marie Curie PhD Graduate School NEURAD to JW, MCG and LB, grants of the Austrian Science Fund FWF (Austria) to FM and DR (S-9304-B05), to FM and SB (LIPOTOX), and to SB (T-414-B09; Hertha-Firnberg Fellowship) and an EMBO Installation Grant, a Marie Curie IRG, and a grant of the Fundação para a CiĂȘncia e Tecnologia (PTDC/SAU-NEU/105215/2008) to TFO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Nitrated 뱉Synuclein Immunity Accelerates Degeneration of Nigral Dopaminergic Neurons
The neuropathology of Parkinson's disease (PD) includes loss of dopaminergic neurons in the substantia nigra, nitrated alpha-synuclein (N-alpha-Syn) enriched intraneuronal inclusions or Lewy bodies and neuroinflammation. While the contribution of innate microglial inflammatory activities to disease are known, evidence for how adaptive immune mechanisms may affect the course of PD remains obscure. We reasoned that PD-associated oxidative protein modifications create novel antigenic epitopes capable of peripheral adaptive T cell responses that could affect nigrostriatal degeneration.Nitrotyrosine (NT)-modified alpha-Syn was detected readily in cervical lymph nodes (CLN) from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice. Antigen-presenting cells within the CLN showed increased surface expression of major histocompatibility complex class II, initiating the molecular machinery necessary for efficient antigen presentation. MPTP-treated mice produced antibodies to native and nitrated alpha-Syn. Mice immunized with the NT-modified C-terminal tail fragment of alpha-Syn, but not native protein, generated robust T cell proliferative and pro-inflammatory secretory responses specific only for the modified antigen. T cells generated against the nitrated epitope do not respond to the unmodified protein. Mice deficient in T and B lymphocytes were resistant to MPTP-induced neurodegeneration. Transfer of T cells from mice immunized with N-alpha-Syn led to a robust neuroinflammatory response with accelerated dopaminergic cell loss.These data show that NT modifications within alpha-Syn, can bypass or break immunological tolerance and activate peripheral leukocytes in draining lymphoid tissue. A novel mechanism for disease is made in that NT modifications in alpha-Syn induce adaptive immune responses that exacerbate PD pathobiology. These results have implications for both the pathogenesis and treatment of this disabling neurodegenerative disease
Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview
PD is a common and a debilitating degenerative movement disorder. The number of patients is increasing worldwide and as yet there is no cure for the disease. The majority of existing treatments target motor symptom control. Over the last two decades the impact of the genetic contribution to PD has been appreciated. Significant discoveries have been made, which have advanced our understanding of the pathophysiological and molecular basis of PD. In this chapter we outline current knowledge of the clinical aspects of PD and the basic mechanistic understanding
- âŠ