1,863 research outputs found

    Stochastic Dominance Portfolio Analysis of Forestry Assets

    Get PDF
    We consider the forestry decision-making and harvesting problem from the perspective of financial portfolio management, where harvestable forest stands constitute one of the liquid assets of the portfolio. Using real data from Finnish mixed borealis forests and from the Helsinki stock exchange, we investigate the effect of trading the timber stock together with the forest land, or without the land (i.e., harvesting), on the portfolio efficiency. As our research methodology, we utilize the general Stochastic Dominance (SD) criteria, focusing on the recent theoretical advances in analyzing portfolio diversification within the SD framework. Our findings shed some further light on the question of how to model the forestry planning problem, and provide some comparative evidence of the applicability of the alternative SD test approaches.Forest Management, Portfolio Optimization, Stochastic Dominance, Diversification

    Microkelvin thermometry with Bose-Einstein condensates of magnons and applications to studies of the AB interface in superfluid 3^3He

    Full text link
    Coherent precession of trapped Bose-Einstein condensates of magnons is a sensitive probe for magnetic relaxation processes in superfluid 3He-B down to the lowest achievable temperatures. We use the dependence of the relaxation rate on the density of thermal quasiparticles to implement thermometry in 3He-B at temperatures below 300 ÎĽ\muK. Unlike popular vibrating wire or quartz tuning fork based thermometers, magnon condensates allow for contactless temperature measurement and make possible an independent in situ determination of the residual zero-temperature relaxation provided by the radiation damping. We use this magnon-condensate-based thermometry to study the thermal impedance of the interface between A and B phases of superfluid 3He. The magnon condensate is also a sensitive probe of the orbital order-parameter texture. This has allowed us to observe for the first time the non-thermal signature of the annihilation of two AB interfaces.Comment: 26 pages, 7 figures, manuscript prepared for EU Microkelvin Collaboration Workshop 2013. Accepted for publication in Journal of Low Temperature Physic

    Comparison of User Traffic Characteristics on Mobile-Access versus Fixed-Access Networks

    Get PDF
    We compare Web traffic characteristics of mobile- versus fixed-access end-hosts, where herein the term "mobile" refers to access via cell towers, using for example the 3G/UMTS standard, and the term "fixed" includes Wi-Fi access. It is well-known that connection speeds are in general slower over mobile-access networks, and also that often there is higher packet loss. We were curious whether this leads mobile-access users to have smaller connections. We examined the distribution of the number of bytes-per-connection, and packet loss from a sampling of logs from servers of Akamai Technologies. We obtained 149 million connections, across 57 countries. The mean bytes-per-connection was typically larger for fixed-access: for two-thirds of the countries, it was at least one-third larger. Regarding distributions, we found that the difference between the bytes-per-connection for mobile- versus fixed-access, as well as the packet loss, was statistically significant for each of the countries; however the visual difference in plots is typically small. For some countries, mobile-access had the larger connections. As expected, mobile-access often had higher loss than fixed-access, but the reverse pertained for some countries. Typically packet loss increased during the busy period of the day, when mobile-access had a larger increase. Comparing our results from 2010 to those from 2009 of the same time period, we found that connections have become a bit smaller

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    Turbulent Vortex Flow Responses at the AB Interface in Rotating Superfluid 3He-B

    Full text link
    In a rotating two-phase sample of 3He-B and magnetic-field stabilized 3He-A the large difference in mutual friction dissipation at 0.20 Tc gives rise to unusual vortex flow responses. We use noninvasive NMR techniques to monitor spin down and spin up of the B-phase superfluid component to a sudden change in the rotation velocity. Compared to measurements at low field with no A-phase, where these responses are laminar in cylindrically symmetric flow, spin down with vortices extending across the AB interface is found to be faster, indicating enhanced dissipation from turbulence. Spin up in turn is slower, owing to rapid annihilation of remanent vortices before the rotation increase. As confirmed by both our NMR signal analysis and vortex filament calculations, these observations are explained by the additional force acting on the B-phase vortex ends at the AB interface.Comment: 6 pages, 6 figure

    Superfluid vortex front at T -> 0: Decoupling from the reference frame

    Full text link
    Steady-state turbulent motion is created in superfluid 3He-B at low temperatures in the form of a turbulent vortex front, which moves axially along a rotating cylindrical container of 3He-B and replaces vortex-free flow with vortex lines at constant density. We present the first measurements on the thermal signal from dissipation as a function of time, recorded at 0.2 Tc during the front motion, which is monitored using NMR techniques. Both the measurements and the numerical calculations of the vortex dynamics show that at low temperatures the density of the propagating vortices falls well below the equilibrium value, i.e. the superfluid rotates at a smaller angular velocity than the container. This is the first evidence for the decoupling of the superfluid from the container reference frame in the zero-temperature limit.Comment: 4 pages, 4 figure
    • …
    corecore