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Abstract

We consider the forestry decision-making and harvesting problem from the perspective of
financial portfolio management, where harvestable forest stands constitute one of the liquid assets
of the portfolio. Using real data from Finnish mixed borealis forests and from the Helsinki stock
exchange, we investigate the effect of trading the timber stock together with the forest land, or
without the land (i.e., harvesting), on the portfolio efficiency. As our research methodology, we
utilize the general Stochastic Dominance (SD) criteria, focusing on the recent theoretical
advances in analyzing portfolio diversification within the SD framework. Our findings shed some
further light on the question of how to model the forestry planning problem, and provide some
comparative evidence of the applicability of the alternative SD test approaches.
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Introduction

During the last decades there has been increasing research interest in forestry decision-making
under risk. A frequently followed approach is to consider forest as one investment alternative
among other assets in a financial portfolio, the primary source of risk being the fluctuations in the
stumpage prices (e.g. Thomson, 1991, and Reeves and Haight 2000). The conventional approach
models the forest stands, including both the timber stock and the land, as a non-separable liquid
asset (Mills and Hoover 1982).

The recent paper by Heikkinen (1999) considered the possibility to harvest and sell the
timber stock, without trading the land, as a more realistic and relevant way of modeling the risk
management problem of a forest estate in Finland, which has mixed Nordic borealis forests as the
main assets. In principle, there is no reason why the timber-stock and the land could not be
modeled as two separate assets. The operational forest management, for example, usually only
concerns the harvesting decisions. For many land owners land sales are not an alternative,
because land ownership has value as such or the land area may have other than economic value.
These lands owners might, however, try to maximize their cutting incomes. While markets for
both harvested timber and growing forest-land are established, trading growing timber stock
without the land is quite unusual.
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In Finland, transactions concerning harvested timber are much more common than trading
with forest land, while markets for growing stock are nonexistent. In early 1990's there were
roughly 135.000 timber sales transactions per year in Finland, but just a one or two thousand
transactions in the markets of forest land. Therefore, the existing timber stock can be considered a
much more liquid asset than rural forest-land. However, increasing the timber stock, or
modifying its species and assortments composition, is not feasible in the short run. This is an
important consideration from the point of view of risk management. Modeling the timber
harvesting decision problem as a part of the management of a mixed asset portfolio in a realistic
way is not a trivially simple task. Seemingly innocent simpli fications can make a big difference
in the conclusions and recommendations.

If cuttings are implemented at the beginning of the planning period, some return for the
next tree generations is generated during the planning period. If cuttings are not implemented,
this return narurally does not exist. According to Heikkinen (1999) the return on next tree
generations is so minimal that it can be ignored in a short run model and in the case of long
rotation forests. This is also the case in our study. Reeves and Haight (2000) drew similar
conclusions by assuming that the land is sold immediately after the cuttings. Although this
question leaves room for remodeling, it falls beyond the scope of this study.

Focusing on timber-harvesting, Heikkinen demonstrated how the marker imperfections,
which render purchases of new growing stock impossible, can be conveniently modeled by
imposing a set of upper-bound restrictions (linear inequaliti es) on the portfolio weights of the
feasible portfolio set. Somewhat surprisingly, the Mean-Variance (MV, Markowitz, 1952, 1959)
analysis of Heikkinen did not reveal major differences in the MV efficient sets in the two cases of
constrained timber harvesting and unconstrained land trade. Only for the lowest risk/return levels,
the liquidity assumption for the land made a notable difference. Whether this result is due to the
limitations of the MV model, remains an open question.

The MV model requires the asset returns to be normally distributed or the decision-maker’s
utili ty function to be of quadratic form. In many circumstances these assumptions appear
questionable, not least in case of forestry and other natural resource assets. For example, there is
empirical evidence that forestry returns (first differences of log prices) are not normally
distributed (Toppinen and Toivonen, 1998; Heikkinen and Kanto, 2000). When the assumptions
of MV do not hold, the Stochastic Dominance (SD) efficiency criteria offer the most immediate
extension (see e.g. Bawa, 1982; or Levy, 1992, for a survey of SD). SD accounts for the entire
probabili ty distribution (not just the first two moments) and applies for the general classes of
non-satiated and/or risk-aversive preference functions. In our SD approach the question is
whether the current forest stands form an eff icient portfolio strategy as such, or should some of
them be harvested to generate cutting income which can be invested in the stock markets? It is
well -known fact that it is not easy to specify decision-makers utili ty function. Decision-makers
are often not willi ng or able to answer precise questions regarding their preferences. The SD
approach involves only minimal assumptions concerning decision-makers preferences. The
Second-order SD only assumes that decision-maker is risk averse and non-satiated. This
assumption usually holds for majority of the decision-makers.



Unfortunately, the SD approach has had a serious shortcoming in dealing with portfolio
diversification. While it is relatively simple to identify the MV eff icient set of portfolios, until
now there has not been any method of testing whether a given portfolio is SD efficient, let alone
computing all SD efficient portfolios (i.e., the SD eff icient set). This also explains why
theoretically appealing SD criteria have attracted so littl e applications in finance and related
fields.

The recent work of Kuosmanen (2001), and the subsequent developments by Post (2001),
have to a great extent eliminated this handicap of SD: It turns out that the SD efficient set
exhibits a relatively simple polyhedral structure, which can be analyzed by standard techniques
and algorithms. In fact, one can test for SD eff iciency by solving a simple Linear Programming
problem, while MV analysis requires more complex Quadratic Programming.

In this paper we revisit the forest risk management problem of Heikkinen (1999), utili zing
the latest SD tools. Our main objective is to investigate the influence of the constraints on
purchasing growing timber stock, as modeled by Heikkinen, to the portfolio efficiency in terms
of the more general SD criteria. We find it interesting to investigate the robustness of the earlier
MV results and conclusions regarding the MV assumptions. As a valuable by-product, this also
enables us to compare the approaches of Kuosmanen (2001) and Post (2001), and highlight their
relative merits in the context of the present application. By sharing our findings and experiences
from this application, we also hope to provide valuable guidelines for further development of the
SD approach.

The rest of the paper unfolds as follows. The next section introduces the basic SD notions
and outlines the diversification analysis proposed by Kuosmanen (2001). We then review the two
alternative test procedures proposed by Kuosmanen (2001) and Post (2001), respectively. This is
followed by a description of the empirical forest management problem and the data set. We then
apply and adapt the SD method to the present data, and discuss the results. The concluding
section puts forth some interesting routes for future research.

Diversification and Stochastic Dominance

This section introduces the basic terminology and outlines some recent advances in the SD
methodology. First of all , it is worth noting there are an infinite number of different SD criteria
(i.e., SD of order n, n = 1,2,…), so we have to be more specific about the meaning of SD in the
present context. For simplicity, we focus exclusively on the Second-order SD criterion (henforth
SSD). Consider two arbitrary risky portfolios j and k with the return distributed according to the
cumulative distribution functions (CDFs) Gj and Gk, respectively.

Definition: Portfolio j dominates portfolio k by Second-order Stochastic Dominance, denoted by
jD2k if and only if
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The SSD criterion has the following well-known economic interpretation in terms of the
Expected Utility Theory. Consider the von Neumann - Morgenstern utility function :U →\ \ .
SSD dominance jD2k is equivalent to the condition that all non-satiated and risk-aversive
investors (with ( ) 0, ( ) 0 U z U z z′ ′′≥ ≤ ∀ ∈\ ) prefer portfolio j to k (Fishburn, 1964).

In empirical portfolio analysis, the underlying probability distributions G are not known.
The analysis is geared at estimating the distribution functions from the data. We hence assume a
finite (and therefore discrete) sample of return observations of the n assets from m time periods
indexed as { }mT ,...,2,1≡  and { }1,2,...,N n≡ . This gives a panel data representable in the form of

matrix 1( ... )T
nY Y Y≡  with 1( ... )j j jmY Y Y≡ . Assuming away shortsales,1 we denote the portfolio

weights by λ ∈Λ , where 
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∑\  denotes the feasible domain. The set of feasible

portfolios (characterized here as return time series) is hence
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�

.

Much of the appeal of the SD approach lies in its avoidance of arbitrary assumptions
regarding the function form of the underlying distributions. Rather, the SD approach ' lets the data
speak for themselves' . To derive the empirical distribution function (EDF) for an arbitrary
portfolio I, the standard approach is to rearrange elements of return vector iy ∈ Ψ  in non-

decreasing order, and denote the resulting ranked return vector by xi, i.e. imii xxx ≤≤≤ !21 .

Observe that this operation involves a loss of potentially valuable information on the time-series
structure of the observations. We will henceforth reserve y,Y  for the time series, and x for the
ranked data. Based on xi, we further construct the cumulative sum vector )( 1 imii xxx ′′=′ !  where

∑
=
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k

j
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1

. Utilizing the function ( ) :iO z +→\ ` :

(2) { }iti xzTtMaxzO ≥∈≡)( ,

we can construct the empirical distribution function (EDF) for asset i simply as

(3)  ( ) ( ) /i iH z O z m= .

The EDF defined by (3) provides a non-parametric minimum variance unbiased estimate of
the underlying unobservable CDF. Therefore, a vast number of empirical studies apply SD
criteria directly on EDF Hi when the underlying CDF Gi is not known (see e.g. Bawa, 1982, or
                                                          
1 Observe that if our data set contains at least m + 1 linearly independent return vectors Yi and shortsales are not
limited, then the portfolio set Ψ spans the entire m dimensional Euclidean space (i.e. infinite returns are possible).
Therefore, it would be necessary to impose some constraints on the shortsale possibilities. However, the shape of the
portfolio set Ψ is likely to be sensitive to the particular specification of such constraints. For simplicity, we
completely exclude the possibility of shortsales in the following.



Levy, 1992, for surveys).2 In this respect, a well-known result from the majorization theory
provides a useful starting point:

Theorem 1: The following equivalence results hold for empirical distributions of all portfolios j
and k:

jD2k ⇔ ktjt xx ′≥′  Tt ∈∀ , and ktjt xx ′>′  for some Tt ∈ .

Proof. Follows directly from the result of Karlin and Novikoff (1963), see e.g. Aboudi and Thon
(1994, p. 509-510) for discussion.

The inequalities of Theorem 1 can be easily checked by enumeration. Hence, Theorem 1
forms a basis for a simple but effective ' crossing algorithm' for testing SD relationships by a pair-
wise comparison of asset returns.

The notion of SD efficiency assumes some scarcity for the investment opportunities.
Focusing on the portfolio set Ψ , SD efficiency is characterized by the following definitions:

Definition 2: Portfolio k: Ψ∈ky  is FSD (SSD) efficient in set Ψ , if and only if, jD1k (jD2k)

Ψ∉⇒ jy . Otherwise k is FSD (SSD) inefficient.

Definition 3: The set { }0 2 0( ) Dmy y y y∆ ≡ ∈ � , l = 1,2, is called the dominating set of the

evaluated portfolio y0.

The dominating set relates to SD efficiency in the following sense:

Lemma 1: Portfolio y0 is SSD efficient if and only if the dominating set of y0 does not include any
feasible portfolio, i.e. ∩Ψ 0( )y∆ = ∅ .

Proof. Follows directly from Definitions 2 and 3.

As an immediate corollary, if we can identify the dominating set, we can test SD efficiency by
checking whether the intersection of the dominating set and the portfolio set is empty.
Unfortunately, characterization of the dominating and the efficient set is a highly complicated
problem. Only very recently, Kuosmanen (2001a) derived the explicit characterizations of the
SSD dominating sets for an arbitrary evaluated portfolio y0. We next briefly review these results.

Matrix ij m m
W W

×
 =    is called doubly stochastic if its elements are non-negative real numbers

and all its rows and columns sum up to unity. Formally, the set of doubly stochastic matrices is
henceforth denoted by

                                                          
2 Also nonparametric statistical inference on CDF is possible e.g. by using the Kolmogorov-Smirnov tests (Porter
and Pfeffenberger, 1975; McFadden, 1989), Wilcoxon-Mann-Whitney test (Schmid and Trede, 1996) or the
bootstrapping approach (Nelson and Pope, 1990). For brevity, we here abstract from such inference.



(4) [ ]{ ;10 ≤≤≡Ξ ijmxmij WW ( ) }111
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Note that the set of permutation matrices is a subset of Ξ , but the converse is not true. Utilizing
the famous theorem of doubly stochastic matrices by Hardy, Littlewood, and Polya (1934),
Kuosmanen (2001b) derived the following analytical characterization of the dominating set:

Theorem 2: 0( )y∆ { }0 0: ;  my W y y W y y P P= ∈ ∃ ∈Ξ ≥ ≠ ∀ ∈Π\

As a direct corollary, the set 0( )y∆  is closed, monotonous, and symmetric with respect to

the diagonal ray of risk-free assets. In addition, it is a convex set, which is very convenient from
the operational point of view.
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Figure 1: The SSD dominating set of portfolio (1,4).

Figure 1 graphically illustrates the SSD dominating set of an arbitrary vector ( )4,10 =y .

Note that the smallest risk-free return that dominates portfolio y0 by SSD equals 2.5, i.e. 2.5 > 1
and 2.5 + 2.5 = 1 + 4, which equals the mean return of the portfolio y0. This confirms the well-
know fact that an option with the smaller mean cannot dominate by SSD (Hadar and Russel,
1969).

Efficiency Tests

By Lemma 1, we may test SD efficiency of any given portfolio y0 by simply checking whether
the dominating set ∆  and the portfolio set Ψ  share common portfolios, in other words, whether

SSD dominating set



any dominating portfolio is feasible. Thus, consider the test statistic ( )N yθ2 0  obtained as the

optimal solution to the following Linear Programming (LP) problem:
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where ( )TYyY 0=+ . Assuming all elements of 0y  and Y are finite, the optimal solution to (5)

always exist.

The test statistic Nθ2  has a natural interpretation as the “inefficiency premium” of the

evaluated portfolio: ( )N yθ2 0  indicates the difference of the mean return between the evaluated

portfolio and the dominating portfolio with the highest mean return. In other words, even a most
risk-aversive investor could gain at least ( )N yθ2 0  by following the portfolio strategy

* argmaxλ ≡ ( )N yθ2 0 , which does not involve more risk compared to the present situation.

Intuitively, the objective function maximizes the ineff iciency premium, while the first constraint
guarantees SSD dominance (by Theorem 2). The remaining constraints simply secure that W is a
dounbly stochastic matrix and λ  is a vector of portfolio weights of the benchmark portfolio.

Following Kuosmanen (2001), Nθ2  is a necessary test statistic.

Theorem 3: 2 0( ) 0N yθ =  is a necessary condition for SSD efficiency of portfolio y0.

Proof. Kuosmanen (2001).

However, 2 0( ) 0N yθ =  is not yet a suff icient condition. In particular, it is easy to verify that any

equal-mean portfolio Wy0 , Π−Ξ∈W  dominates the original portfolio 0y  by SSD. To test

whether any of those dominating portfolios might be feasible, we may calculate the following test
statistic:
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Theorem 4: 2 0( ) 0N yθ =  and 
2

2 0( )
2

S m
yθ =  is a necessary and sufficient condition for SSD

efficiency of portfolio y0.
Proof. Kuosmanen (2001)

We find these quite remarkable results in the sense that we have shown that the unsolved
problem of testing SD efficiency actually boils down to a very standard class of LP problems.
Very effective simplex and interior point methods are generally available for solving large-scale
LP problems. Consequently, the SSD test statistics can be computed by a usual desktop PC.
Moreover, the computational cost should not prevent complementing the test by other
(computationally intensive) numerical techniques like the bootstrapping approach. See Post
(2001) for some encouraging simulation results.

In fact, there also exists a more straightforward way of testing SSD efficiency, as suggested by
Post (2001). Consider the following alternative test statistic:

(7)    

2 0 0

0 0

( ) min  

. .

1 

 , :

0

w

j

l k l k

T

y y w

s t

Y w j N

w w l k T y y

w

θ =

≤ ∀ ∈

< ∀ ∈ >

>

�

G

Theorem 5: Portfolio y0 is SSD efficient in Ψ  if and only if 2 0( ) 1yθ ≥
�

.

Proof. See Post (2001).

The test statistic 2θ
�

 is by all essential parts identical to that proposed by Post (2001),
derived from the Expected Utility interpretation of SSD. We may view this result as a separating
hyperplane theorem: By convexity of the dominating set ∆  and the portfolio set Ψ , portfolio y0

is efficient if there is a linear hyperplane which (strictly) separates the dominating set from the



portfolio set. The weights w can be interpreted as the slope coefficients of this separating
hyperplane. The purpose of the test is to check whether appropriate slope coeff icients exist or not.

 The only difference of problem (7) to Post’s original formulation is that (7) imposes two
strict inequali ty constraints, while Post uses weak inequaliti es. In our framework, the strict
inequaliti es are required for a genuine necessary and sufficient test, to take into account the fact
that portfolio Wy0 , Π−Ξ∈W , is generally “ less risky” than the original portfolio 0y . Post

artificially avoids the inconvenience of strict inequaliti es by imposing a more stringent, non-
standard definition of SSD, which, among other things, breaks down the intuitive link between
the SSD and the Mean-Variance criteria. In particular, Wy0 , Π−Ξ∈W  (i.e., portfolios with the

equal mean return but smaller variance) do not dominate y0 according to Post’s definition of SSD.

The basic LP algorithms do not allow for strict inequaliti es. Still , we may use the standard
trick and use an arbitrarily small sensitivity parameter ε  to convert the strict inequaliti es into the
standard LP form

(8)    0 0+  , :

1
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G

Replacing the strict inequali ty constraints of (4.3) by (4.4) allows us to derive a necessary and
suff icient test as the limiti ng case 0ε → . For any real-valued 0ε > , we have a sufficient test:

2 0( ) 1yθ ≥
�

 implies eff iciency, but 2 0( ) 1yθ <
�

 does not imply ineff iciency. For 0ε = , however, we

have a necessary test: 2 0( ) 1yθ ≥
�

 does not verify eff iciency, but 2 0( ) 1yθ <
�

 does confirm

ineff iciency. To obtain a necessary and sufficient efficiency diagnosis, we can solve a pair of test
statistics with 0ε =  and some small 0ε > , and check whether the conclusions are mutually
consistent. If not, we can decrease the value of the sensitivity parameter ε  for the suff iciency test
until diagnoses become unisonous, or we have to declare the test inconclusive.

The infinitesimally thin line between the efficient and the ineff icient sets highlights a
possible disadvantage of the test statistic (7): If 0y  is eff icient, one may need a long (potentially

infinite) series of iterations to find suff iciently small 0ε >  that confirms efficiency. On the other
hand, the advantage of the latter test is its simplicity: Problem (5) involves 3m2 + n variables in
contrast to the m variables of Problem (5), and hence the latter can be solved much faster. While
the computation time of (5) is measured in minutes or hours depending on the data size, the time
of solving problem (7) is measured in seconds. (See Table 4 below for some evidence.) These
hard data led Post (2001) to describe his test procedure as the first “ tractable” test of SSD for
large applications.

However, there are some attractive features in the computationally more demanding test
statistic Nθ2  which deserve consideration. First, the test statistic itself has an intuitive
interpretation as a cardinal “ inefficiency” measure, which allows for comparing the inefficiency
premiums of various ineff icient portfolios, for example. By contrast, Post’s test statistic is merely
an arbitrary dummy. Second, in case of inefficiency diagnosis, the optimal solution to (5) always



identifies a dominating portfolio as a benchmark, while (7) does not. This feature may have
significance in the portfolio management applications. Third, perhaps most importantly, in (5) we
can directly impose additional constraints on the feasible set of portfolio weights λ . This is not
possible in formulation (7). This proves a pivotal advantage for the Kuosmanen approach in the
forest management application to follow.

Application

To assess the usefulness of the SD developments outlined above, we revisit the harvesting
problem of a real forest holding in Eastern Finland, which has been earlier studied in the MV
framework by Heikkinen (1999), and in terms of a dynamic stochastic optimization model in
Heikkinen (2001). These studies operate with explicitly highly-specified utility functions, even
though there was no information about decision makers preferences. As a difference to these
studies we apply now SD approach that is more general, i.e., fewer assumptions are needed. The
land area of the forest holding is 22.6 hectares, which is partitioned in the official forestry plan
into 14 stands according to the geographic location. Each stand has a unique mixture of timber
species and assortments as well as physical growth, and hence stands are managed independently.
In practice, all harvestable stands are mixed stands, which include at least saw-logs and
pulpwood.

Cutting is usually implemented by forest stand, not by tree assortment or species. This is
because it is unprofitable to select only certain species from the stand and because in practise all
the mature trees include both sawlogs and pulpwood. Finnish forestry legislation forbids final
felling of young stands. Regional Forestry Centers determine which stands are harvestable. In the
present case, final felling is allowed only in four forest stands aging between 70 and 90 years.
Therefore, only the timber stock on those specific four stands can be considered as a liquid asset.

Table 1. Characteristics of the four harvestable stands
Stand
#162

Stand
#163

Stand
#165

Stand
#173

Total Prices
¼��P 3

1996:12
Pine sawlogs 16 m3 17 m3 41.73
Spruce sawlogs 67 m3 1 m3 267 m3 34.66
Birch sawlogs 16.50
Pine pulpwood 9 m3 16 m3 20.82
Spruce pulpwood 25 m3 2 m3 191 m3 41.53
Birch pulpwood 3 m3 14 m3 15.84

Total 92 m3 31 m3 47 m3 485 m3 628 m3

Growth (%) 3.2 4.1 4.1 3.7
Value (¼�� 2 843 940 1 195 13 232 18 210
Portfolio weight 0.16 0.05 0.07 0.72
Area (ha) 0.7 0.5 0.6 2.2 4



Table 1 presents descriptive statistics about timber species and assortments, growth,
monetary value, weight in the original portfolio, and land area of the four stands considered. Two
stands consisted mainly primarily of spruce sawlogs and pulpwood, the other two mainly of pine
sawlogs and pulpwood. The annual growth of stands varied between 3.2 and 4.1 percents. The
total timber volume of these four stands was 628 m3 and the value 18,210 Euro using the prices of
12/1996.

For simplicity, we use the general stock market index of Helsinki Stock Exchange (HEX)
to represent equities as an alternative investment possibility. The monthly arithmetic averages of
the daily closing values of HEX were calculated to make data comparable to stumpage prices,
which are reported on monthly basis. Our historical data ranges from October 1985 to December
1996. During this period, the stock marker of Helsinki offered the mean return of 16 per cent,
with a standard deviation of 0.21. The forest stands offered a much more modest growth with
mean return of roughly 6 per cent.  On the other hand, the growth was also more stable: The
standard deviation of the returns varied between 0.07 and 0.10 for all four forest stands. (For
more detailed statistics and discussion, see Heikkinen, 1999).

The investment problem of the landowner is to reallocate his liquid timber assets worth
18,210 Euro in a productive way. We consider two basic short-term strategies. The first is to
harvest the timber immediately, and invest (for a moment) to equities traded in the stock market.
The second alternative is to postpone harvesting to the future, in hope of a price increase for
timber as well as the yielding additional physical growth. Of course, both the stock market and
the future timber prices are risky. For the present purposes we consider the physical growth to be
deterministic. This is a valid assumption in our application, because even though there is small
variation in physical growth in practice, the variation of physical growth is insignificant if it is
compared with price variation.

Besides the two pure strategies discussed above, we consider a full continuum of ' mixed'
diversified strategies. Since we do not consider land sales but merely timber harvesting, the liquid
timber asset can be considered perfectly divisible. For example, it is possible to harvest b percent
(0 ≤ b ≤ 1) of the liquid timber and invest it in the stock market, and hedge the risk by leaving the
remaining 1 - b percent of timber to be harvested in the future. The risk profile of the total
portfolio can be influenced by targeting fellings in specific stands, i.e., it is not necessary to
harvest all stands to the uniform degree. However, we restrict attention to final fellings in the
sense that it is not possible (or cost effective) to target harvest to specific species within any
given stand to change the composition (and hence the risk profile) of the stand. By this
simplification, the historical returns of each forest stand can be computed as the average of the
increases in stumpage prices weighted by the composition (species/thickness) of the timber plus
the physical growth.

In the spirit of Heikkinen (1999), our main objective is to investigate the influence of the
market imperfections, which present themselves in the form of constraints on acquire additional
timber stock of similar quality, to the portfolio efficiency. For example, Stand #163 constitutes
only 5% of the total timber portfolio. It might be in the interest of the forest owner to increase the
share of this type of forestland with valuable pine sawlogs, to achieve a more balanced risk
exposure. However, the differences in species and assortment decomposition and the physical



growth rate make each stand unique in terms of the risk profile. Therefore, it is not self-evident
that forest-land with similar characteristics is available on the local/regional markets, at the
prevailing market-prices.

Most earlier studies applying portfolio optimization techniques have simply assumed that
forest stands can be traded like financial assets. The paper by Heikkinen (1999) was the first
study to explicitly model the constraints for buying additional forest land with similar forest land.
Specifically, given the original portfolio weights 162 0.16λ = , 163 0.05λ = , 165 0.07λ = ,

173 0.73λ = , and 0.00HEXλ = . Heikkinen imposed the linear constraints

162 0.16λ ≤ ,

(9) 163

165

0.05,

0.07,

λ
λ

≤
≤

 173 0.73λ ≤ ,

in the standard Mean-Variance quadratic optimization problem to rule out purchases of additional
forest land. This is especially relevant in the present Finnish case, where the timber is a
reasonably liquid asset, whereas the forest land is not.

Empirical results

To check whether the MV approach would suffice or whether there is indeed case for SD
analysis, we tested the normality assumption of returns required by MV. There are several
statistical tests for testing normality hypotheses, including corrected Kolmogorov-Smirnov tests,
Anderson-Darling test, and the chi-squared test. Since we have no a priori hypotheses of the
mean and the variance of the theoretical distribution, the most basic test procedures do not apply.
We therefore resorted to the Shapiro-Wilks W-test, a standard approach which has performed
well in comparisons (see e.g. Royston, 1992, for further details). Table 2 reports the results.

Table 2: Shapiro-Wilks normality test statistics and the associated significance levels (n=135)
Asset Test statistic p-value
HEX 0.792 <0.0001
Stand #162 0.862 <0.0001
Stand #163 0.820 <0.0001
Stand #165 0.902 <0.0001
Stand #173 0.793 <0.0001

The interpretation of the W-tests is clear: In all case of all assets the null hypothesis of
normality is rejected at 99% confidence level or higher. By visual inspection, all 5 assets appear
to have a bell-shaped distribution, symmetric around the mean. Normality is violated mainly
because of the high kurtosis, not because of any notable skewness. Figure 2 illustrates visually



how the cumulative return distribution of Stand #165 deviates from the CDF of a normal
distribution with the equal mean and variance levels.
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Figure 2: Cumulative return distribution of Stand #165 (solid curve), compared to the
normal distribution with the equal mean and variance (dashed curve).

We next applied the SSD tests to above described data to investigate the influence of the
purchasing constraints (9) on SSD efficiency. We used the GAMS.IDE software powered by the
CONOPT2 solver, and a 1.7 GHz processor with 256 MB of physical memory, for solving the

test statistics 2
Nθ , 2

Sθ , and 2θ
�

 for the original portfolio 162 0.16λ = , 163 0.05λ = , 165 0.07λ = ,

173 0.73λ = , and 0.00HEXλ = . Table 3 reports the values of the test statistics.

Table 3: Influence of purchasing constraint on SSD efficiency
Kuosmanen Post

2
Nθ 2

Sθ 2θ
�

No constraint 0.0008 - 0.4920
Constrained case 0.0000 8978.00 n.a.

#165

normal dist.



In the unconstrained case, both the Kuosmanen and the Post approaches diagnose the
present forest portfolio as inefficient. The Kuosmanen statistic reveals that the mean return could
be increased only by the minimal 0.08 percentage points without altering the risk profile. The
Post statistic confirms the inefficiency diagnosis, but does not provide any additional
information. (As the necessary condition was already violated, the sufficient 2

Sθ  statistic was
omitted as meaningless.)

Furthermore, from the optimal solution of (5), we learn that * .λ =162 0 906  and
* .HEXλ = 0 094 . That is, the maximum return with the current risk profile would be obtained by

harvesting all other stands, but acquiring almost equal amounts of additional forest land similar to
Stand #162. That is, mature spruce forest with over 70 per cent of the timber suitable for sawlogs.
Of course, one could favor more homogenous spruce stands in the long term forest planning. In
this respect, the result is well in line with the recent trends in forestry practices in Finland. In the
short run, however, this would require trading the forest land. Moreover, it is highly unlikely that
the present land ownership could be instantaneously traded for large areas of old spruce forests.
Therefore, the unconstrained case seems not very realistic for the short run planning. It should be
also noted that the expected gains of 0.08 per cent points are very minimal. This should be
balanced against the transaction costs of making radical changes of the investment strategy, the
environmental and the aesthetic losses due to increased homogeneity of the tree species, as well
as the option value of postponing the semi-irreversible harvesting decision, which have not been
duly accounted for in the present analysis.

Consider next the constrained case where increasing the timber stock is not an option in the
short run, that is, the pure harvesting problem. As discussed above, we cannot incorporate
additional constraints on the portfolio weights in Post’s approach, so the Kuosmanen tests are the
only alternative. Interestingly, the original portfolio turns out to be efficient if the buying
constraint is imposed. That is, the current forest portfolio is the optimal, expected utility
maximizing choice for at least some non-satiated risk-aversive investors. In other words, we can
rationalize the observed emphasis on the under the land-trading constraint, applying the SSD
criteria. Of course, this does not imply the risk profile of the current portfolio matces optimally
with the preferences of the forest owner. It merely underlines that it is not possible to find a
preferable alternative portfolio without learning more of the forest owners preferences.

Now, let us contrast these results to those of the MV analysis of Heikkinen. The MV
approach minimizes the variance of the portfolio, given an exogenously specified target mean
return. From the scenarios considered by Heikkinen, the case of 6 per cent mean return target is
closest to the original mean return of 5.9 per cent. In the unconstrained case, also the MV
approach finds the original portfolio inefficient. Interestingly, the efficient portfolio also involved
a similar buying and harvesting strategy, concentrating as much as 43.5 per cent of the total
wealth in the forest similar to Stand #162. The MV analysis indicated that the optimal
diversification strategy would decrease the portfolio variance by roughly 5.9 per cent.

In case of land-trading constraint, the SD and MV approaches yielded different qualitative
results. While under SD criteria the original portfolio was diagnosed efficient, the MV criteria
suggest inefficiency. However, the MV efficient benchmark portfolio at the target mean return of



6 per cent does not deviate substantially from the original forest portfolio. In fact, only 2 per cent
of the total wealth is reallocated from the timber assets to the stock market. This would yield a
1.8 percent decrease in the portfolio variance.

As a conclusion, most risk-aversive forest managers would probably postpone harvesting
and preserve the present composition of the portfolio in light of these results. Indeed, both SD
and MV fail to demonstrate any significant gains by further diversification of the portfolio to the
stocks, either in terms of higher mean return or lower variance. Less risk-aversive forest owners
could scan the SD or the MV efficient subsets of the portfolio set Ψ  to identify preferable
diversification strategies. Since this would involve more active interaction with the forest
managers, and effective methodologies for identifying and representing the efficient subsets
remain to be developed, we refrain from further operational recommendations.

We also obtained evidence of the relative computational burden of the different tests. Table
4 reports the computation times of the different test statistics (in seconds). As expected, Post’s
test statistic proved the quickest to solve, requiring only two seconds for complete execution,
whereas the Kuosmanen version took over 10 minutes in the unconstrained case, and almost 8
minutes in the constrained one. Furthermore, confirming the efficiency status took over 2 hours
of computation time in the constrained case. Still, we think in many situations this may be an
affordable price to pay for a meaningful efficiency score, and for the identity of the dominating
portfolio yielding the highest mean return. For sure, in the constrained case the Kuosmanen
approach was the only option.

Table 4: Total computation times of different SD statistics (seconds)
Kuosmanen Post

2
Nθ 2

Sθ
2θ
�

No constraint 628.4 - 2.3
Constrained case 461.9 7290.9 n.a.

Conclusions and future research

We think the SD approach could provide useful tools for portfolio analysis when forest
and/or other natural resource assets with non-normal return distributions are involved. Portfolio
analysis can be made using minimum number of assumption if compared with M-V or some
other portfolio optimisation tools that require highly spesific information about decision-maker
preferences. We have reviewed the theoretical framework and the operational tests recently
outlined in Kuosmanen (2001), and integrated to it some useful extensions from the subsequent
work of Post (2001). We revisited the forestry portfolio management case of Heikkinen (1999) to
shed further light on some important practical aspects of the SD tests. Our main focus was on
studying the impact of the possibility to purchase additional quantities of the timber-land with the
desired species and quality characteristics. This is an important question in the Finnish forestry
environment where the liquidity of the timber harvest is much higher than the liquidity of the
land.



Interestingly, we found that the purchasing constraint made a big difference in the SD
efficiency of the portfolio. If desired type of forest land would be for sale, it would pay to trade
the present forest holdings to homogenous spruce forest in the short run. This strategy would
yield 11 percent points higher mean return without changing the present risk exposure or profile
in any way.  In the short run, however, it is not so simple to trade with the forest land. Therefore,
in the short run planning it is relevant to impose the constraint that the shares of the timber assets
cannot be increased in the portfolio.

From methodological perspective, our application proved an interesting case for comparing
the two alternative test approaches proposed by Kuosmanen and Post, respectively. Our
application confirmed the theoretical fact that Post’s test requires less time and computational
resources. However, Post’s test cannot accommodate additional restrictions for the portfolio
weights, so the Kuosmanen approach was the only option in the more short term planning
problem.

In the present application we focused on the new SD tools, ignoring the possible
intertemporal dynamics in the time series, as well as the possible sampling errors. The future
applications could pay further attention on integrating these aspects in the SD framework. The
SD approach could prove a useful analytical framework for dealing with “catastrophic” events.
For example, forestry risks also include such threats as fire, tornados, heavy snow, flood and
pests, which shape the left tail of the return distribution. However, we see there at least two major
difficulties in application of SD to assets exposed to catastrophic events. First, since the
catastrophic events are relatively rare, the observed time series data may fail to adequately
account for these risks. Second, the SD criteria are sensitive to sampling error, especially in the
left tail of the distribution. To circumvent the problems with the left tail, one might enrich the
empirical distribution by a combination of a theoretical catastrophe model and/or the
bootstrapping technique. Although this paper did not extend the analysis towards these directions,
it will to serve as a useful starting point for future investigations and extensions which address
specifically these two difficulties.
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