294 research outputs found

    Sensorimotor functional connectivity: A neurophysiological factor related to BCI performance

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems that allow users to control devices using brain activity alone. However, the ability of participants to command BCIs varies from subject to subject. About 20% of potential users of sensorimotor BCIs do not gain reliable control of the system. The inefficiency to decode user's intentions requires the identification of neurophysiological factors determining “good” and “poor” BCI performers. One of the important neurophysiological aspects in BCI research is that the neuronal oscillations, used to control these systems, show a rich repertoire of spatial sensorimotor interactions. Considering this, we hypothesized that neuronal connectivity in sensorimotor areas would define BCI performance. Analyses for this study were performed on a large dataset of 80 inexperienced participants. They took part in a calibration and an online feedback session recorded on the same day. Undirected functional connectivity was computed over sensorimotor areas by means of the imaginary part of coherency. The results show that post- as well as pre-stimulus connectivity in the calibration recording is significantly correlated to online feedback performance in ÎŒ and feedback frequency bands. Importantly, the significance of the correlation between connectivity and BCI feedback accuracy was not due to the signal-to-noise ratio of the oscillations in the corresponding post and pre-stimulus intervals. Thus, this study demonstrates that BCI performance is not only dependent on the amplitude of sensorimotor oscillations as shown previously, but that it also relates to sensorimotor connectivity measured during the preceding training session. The presence of such connectivity between motor and somatosensory systems is likely to facilitate motor imagery, which in turn is associated with the generation of a more pronounced modulation of sensorimotor oscillations (manifested in ERD/ERS) required for the adequate BCI performance. We also discuss strategies for the up-regulation of such connectivity in order to enhance BCI performance

    SPoC: A novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters

    Get PDF
    Previously, modulations in power of neuronal oscillations have been functionally linked to sensory, motor and cognitive operations. Such links are commonly established by relating the power modulations to specific target variables such as reaction times or task ratings. Consequently, the resulting spatio-spectral representation is subjected to neurophysiological interpretation. As an alternative, independent component analysis (ICA) or alternative decomposition methods can be applied and the power of the components may be related to the target variable. In this paper we show that these standard approaches are suboptimal as the first does not take into account the superposition of many sources due to volume conduction, while the second is unable to exploit available information about the target variable. To improve upon these approaches we introduce a novel (supervised) source separation framework called Source Power Comodulation (SPoC). SPoC makes use of the target variable in the decomposition process in order to give preference to components whose power comodulates with the target variable. We present two algorithms that implement the SPoC approach. Using simulations with a realistic head model, we show that the SPoC algorithms are able extract neuronal components exhibiting high correlation of power with the target variable. In this task, the SPoC algorithms outperform other commonly used techniques that are based on the sensor data or ICA approaches. Furthermore, using real electroencephalography (EEG) recordings during an auditory steady state paradigm, we demonstrate the utility of the SPoC algorithms by extracting neuronal components exhibiting high correlation of power with the intensity of the auditory input. Taking into account the results of the simulations and real EEG recordings, we conclude that SPoC represents an adequate approach for the optimal extraction of neuronal components showing coupling of power with continuously changing behaviorally relevant parameters

    Photon assisted Levy flights of minority carriers in n-InP

    Full text link
    We study the photoluminescence spectra of n-doped InP bulk wafers, both in the reflection and the transmission geometries relative to the excitation beam. From the observed spectra we estimate the spatial distribution of minority carriers allowing for the spectral filtering due to re-absorption of luminescence in the wafer. This distribution unambiguously demonstrates a non-exponential drop-off with distance from the excitation region. Such a behavior evidences an anomalous photon-assisted transport of minority carriers enhanced owing to the high quantum efficiency of emission. It is shown that the transport conforms very well to the so-called Levy-flights process corresponding to a peculiar random walk that does not reduce to diffusion. The index gamma of the Levy flights distribution is found to be in the range gamma = 0.64 to 0.79, depending on the doping. Thus, we propose the high-efficiency direct-gap semiconductors as a remarkable laboratory system for studying the anomalous transport.Comment: 12 pages, 9 figure

    Relationship between regional white matter hyperintensities and alpha oscillations in older adults

    Get PDF
    Aging is associated with increased white matter hyperintensities (WMHs) and with alterations of alpha oscillations (7–13 Hz). However, a crucial question remains, whether changes in alpha oscillations relate to aging per se or whether this relationship is mediated by age-related neuropathology like WMHs. Using a large cohort of cognitively healthy older adults (N=907, 60-80 years), we assessed relative alpha power, alpha peak frequency, and long-range temporal correlations (LRTC) from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence of WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was related to elevated alpha power, with the strongest association in the bilateral occipital cortex. In contrast, we observed no significant relation of the WMHs probability with alpha peak frequency and LRTC. Finally, higher age was associated with elevated alpha power via total WMH volume. We suggest that an elevated alpha power is a consequence of WMH affecting a spatial organization of alpha sources

    Power-law dynamics in cortical excitability as probed by early somatosensory evoked responses

    No full text
    While it is well-established that instantaneous changes in neuronal networks’ states lead to variability in brain responses and behavior, the mechanisms causing this variability are poorly understood. Insights into the organization of underlying system dynamics may be gained by examining the temporal structure of network state fluctuations, such as reflected in instantaneous cortical excitability. Using the early part of single-trial somatosensory evoked potentials in the human EEG, we non-invasively tracked the magnitude of excitatory post-synaptic potentials in the primary somatosensory cortex (BA 3b) in response to median nerve stimulation. Fluctuations in cortical excitability demonstrated long-range temporal dependencies decaying according to a power-law across trials. As these dynamics covaried with pre-stimulus alpha oscillations, we establish a functional link between ongoing and evoked activity and argue that the co-emergence of similar temporal power-laws may originate from neuronal networks poised close to a critical state, representing a parsimonious organizing principle of neural variability

    Recent Advances in the Synthesis and Application of SF5-Containing Organic Compounds

    Get PDF
    It is well known that fluorinated molecules play an important role in daily life. For example, organic molecules bearing either a fluorine atom itself or a short polyfluorinated substituent such as mono-, difluoro-, and trifluoromethyl groups, or pentafluoroethyl and perfluoropropyl groups are already widely used in medicinal and agricultural chemistry. In contrast, molecules with long perfluorinated chains have found vast application in materials science. Among the fluorine-containing moieties, the pentafluorosulfanyl (SF5) substituent occupies a special place.1 The pentafluorosulfanyl group brings unique properties to organic compounds and often improves their biological activities due to the group’s high chemical and metabolic stability, significant lipophilicity, substantial steric effect, unique geometry, and low surface energy. Here we present new routes towards SF5-substituted aliphatic and heterocyclic compounds

    Alterations in rhythmic and non-rhythmic resting-state EEG activity and their link to cognition in older age

    Get PDF
    While many structural and biochemical changes in the brain have been previously associated with aging, the findings concerning electrophysiological signatures, reflecting functional properties of neuronal networks, remain rather controversial. To try resolve this issue, we took advantage of a large population study (N=1703) and comprehensively investigated the association of multiple EEG biomarkers (power of alpha and theta oscillations, individual alpha peak frequency (IAF), the slope of 1/f power spectral decay), aging, and aging and cognitive performance. Cognitive performance was captured with three factors representing processing speed, episodic memory, and interference resolution. Our results show that not only did IAF decline with age but it was also associated with interference resolution over multiple cortical areas. To a weaker extent, 1/f slope of the PSD showed age-related reductions, mostly in frontal brain regions. Finally, alpha power was negatively associated with the speed of processing in the right frontal lobe, despite the absence of age-related alterations. Our results thus demonstrate that multiple electrophysiological features, as well as their interplay, should be considered when investigating the association between age, neuronal activity, and cognitive performance

    Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression

    Get PDF
    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. © 2012 Clause et al
    • 

    corecore