117 research outputs found

    Spin-1/2 sub-dynamics nested in the quantum dynamics of two coupled qutrits

    Full text link
    In this paper we investigate the quantum dynamics of two spin-1 systems, S⃗1\vec{\textbf{S}}_1 and S⃗2\vec{\textbf{S}}_2, adopting a generalized (S⃗1+S⃗2)2(\vec{\textbf{S}}_1+\vec{\textbf{S}}_2)^2-nonconserving Heisenberg model. We show that, due to its symmetry property, the nine-dimensional dynamics of the two qutrits exactly decouples into the direct sum of two sub-dynamics living in two orthogonal four- and five-dimensional subspaces. Such a reduction is further strengthened by our central result consisting in the fact that in the four-dimensional dynamically invariant subspace, the two qutrits quantum dynamics, with no approximations, is equivalent to that of two non interacting spin 1/2's. The interpretative advantages stemming from such a remarkable and non-intuitive nesting are systematically exploited and various intriguing features consequently emerging in the dynamics of the two qutrits are deeply scrutinised. The possibility of exploiting the dynamical reduction brought to light in this paper for exactly treating as well time-dependent versions of our Hamiltonian model is briefly discussed.Comment: 14 pages, 11 figures; Last two authors name corrected, corrected typos, Fig. 11 changed (same result

    Dzyaloshinskii-Moriya and dipole-dipole interactions affect coupling-based Landau-Majorana-Stückelberg-Zener transitions

    Get PDF
    It has been theoretically demonstrated that two spins (qubits or qutrits), coupled by exchange interaction only, undergo a coupling-based joint Landau-Majorana-Stuckelberg-Zener (LMSZ) transition when a linear ramp acts on one of the two spins. Such a transition, under appropriate conditions on the parameters, drives the two-spin system toward a maximally entangled state. In this paper, effects on the quantum dynamics of the two qudits, stemming from the Dzyaloshinskii-Moriya (DM) and dipole-dipole (d-d) interactions, are investigated qualitatively and quantitatively. The enriched Hamiltonian model of the two spins shares with the previous microscopic one the same C2 symmetry which once more brings about an exact treatment of the new quantum dynamical problem. This paper transparently reveals that the DM and d-d interactions generate independent, enhancing or hindering, modifications in the dynamical behavior predicted for the two spins coupled exclusively by the exchange interaction. It is worthwhile to notice that, on the basis of the theory here developed, the measurement of the time evolution of the magnetization in a controlled LMSZ scenario can furnish information on the relative weights of the three kinds of couplings describing the spin system. This possibility is very important since it allows us in principle to legitimate the choice of the microscopic model to be adopted in a given physical scenario

    Two-qubit entanglement generation through non-hermitian hamiltonians induced by repeated measurements on an ancilla

    Get PDF
    In contrast to classical systems, actual implementation of non-Hermitian Hamiltonian dynamics for quantum systems is a challenge because the processes of energy gain and dissipation are based on the underlying Hermitian system–environment dynamics, which are trace preserving. Recently, a scheme for engineering non-Hermitian Hamiltonians as a result of repetitive measurements on an ancillary qubit has been proposed. The induced conditional dynamics of the main system is described by the effective non-Hermitian Hamiltonian arising from the procedure. In this paper, we demonstrate the effectiveness of such a protocol by applying it to physically relevant multi-spin models, showing that the effective non-Hermitian Hamiltonian drives the system to a maximally entangled stationary state. In addition, we report a new recipe to construct a physical scenario where the quantum dynamics of a physical system represented by a given non-Hermitian Hamiltonian model may be simulated. The physical implications and the broad scope potential applications of such a scheme are highlighted

    Two-qubit entanglement generation through non-Hermitian Hamiltonians induced by repeated measurements on an ancilla

    Full text link
    In contrast to classical systems, actual implementation of non-Hermitian Hamiltonian dynamics for quantum systems is a challenge because the processes of energy gain and dissipation are based on the underlying Hermitian system-environment dynamics that is trace preserving. Recently, a scheme for engineering non-Hermitian Hamiltonians as a result of repetitive measurements on an anicillary qubit has been proposed. The induced conditional dynamics of the main system is described by the effective non-Hermitian Hamiltonian arisng from the procedure. In this paper we demonstrate the effectiveness of such a protocol by applying it to physically relevant multi-spin models, showing that the effective non-Hermitian Hamiltonian drives the system to a maximally entangled stationary state. In addition, we report a new recipe to construct a physical scenario where the quantum dynamics of a physical system represented by a given non-Hermitian Hamiltonian model may be simulated. The physical implications and the broad scope potential applications of such a scheme are highlighted

    TM6SF2 rs58542926 is not associated with steatosis and fibrosis in largecohort of patients with genotype 1 chronic hepatitis C

    Get PDF
    Background & Aims: We tested the putative association of the rs58542926 variant of TM6SF2, a recently described genetic determinant of nonalcoholic fatty liver disease, with steatosis and fibrosis in genotype 1(G1) chronic hepatitis C(CHC) patients. Methods: A total of 694 consecutively biopsied Caucasian G1 CHC patients were genotyped for TM6SF2 rs58542926, IL28B rs12979860 and PNPLA3 rs738409. Steatosis was classified as absent (<5%), mild-moderate(5-29%) and severe( 6530%), Fibrosis was considered severe if=F3-F4. Results: Carriers of TM6SF2 rs58542926 (6.3% of patients) exhibited lower serum levels of cholesterol (P=0.04) and triglycerides (P=0.01), but a similar distribution of steatosis severity (P=0.63), compared to noncarriers. Prevalence and severity of steatosis were reduced in IL28B C allele carriers (P=0.005) and elevated in PNPLA3G allele carriers (P<0.001). After adjustment for age, gender, body mass index and homoeostasis model assessment score, steatosis severity was independently associated with IL28B rs12979860 (odds ratio [OR] 0.69, 95% confidence interval [CI] 0.55-0.86, P=0.001) and PNPLA3 rs738409 (OR 1.84, 95% CI 1.46-2.83, P<0.001), but not TM6SF2 rs58542926 (OR 1.48, 95% CI 0.82-2.69, P=0.19). Variants of TM6SF2 (30.9% vs. 25%, P=0.40), IL28B and PNPLA3 were not directly associated with fibrosis severity, although variants of IL28B and PNPLA3 promoted steatosis (OR 1.36, 95% CI 1.06-1.75, P=0.01) that in turn is associated with severe fibrosis. Conclusions: In G1 CHC patients, TM6SF2 rs58542926 does not affect the histological severity of liver damage. However, IL28B rs12979860 and PNPLA3 rs738409 modify steatosis

    Phylogenetic analysis in the clinical risk management of an outbreak of hepatitis C virus infection among transfused thalassaemia patients in Italy

    Get PDF
    Background: Occurrence of hepatitis C virus (HCV) infection is reduced by effective risk management procedures, but patient-to-patient transmission continues to be reported in healthcare settings. Aim: To report the use of phylogenetic analysis in the clinical risk management of an HCV outbreak among 128 thalassaemia outpatients followed at a thalassaemia centre of an Italian hospital. Methods: Epidemiological investigation and root-cause analysis were performed. All patients with acute hepatitis and known chronic infection were tested for HCV RNA, HCV genotyping, and NS3, NS5A, and NS5B HCV genomic region sequencing. To identify transmission clusters, phylogenetic trees were built for each gene employing Bayesian methods. Findings: All patients with acute hepatitis were infected with HCV genotype 1b. Root-cause analysis, including a lookback procedure, excluded blood donors as the source of HCV transmission. The phylogenetic analysis, conducted on seven patients with acute infection and eight patients with chronic infection, highlighted four transmission clusters including at least one patient with chronic and one patient with acute HCV infection. All patients in the same cluster received a blood transfusion during the same day. Two patients with acute hepatitis spontaneously cleared HCV within four weeks and nine patients received ledipasvir plus sofosbuvir for six weeks, all achieving a sustained virological response. Conclusion: Combined use of root-cause analysis and molecular epidemiology was effective in ascertaining the origin of the HCV outbreak. Antiviral therapy avoided the chronic progression of the infection and further spread in care units and in the family environment
    • …
    corecore