60 research outputs found

    Mechanical and kinetic effects of shortened tropomyosin reconstituted into myofibrils

    Get PDF
    The effects of tropomyosin on muscle mechanics and kinetics were examined in skeletal myofibrils using a novel method to remove tropomyosin (Tm) and troponin (Tn) and then replace these proteins with altered versions. Extraction employed a low ionic strength rigor solution, followed by sequential reconstitution at physiological ionic strength with Tm then Tn. SDS-PAGE analysis was consistent with full reconstitution, and fluorescence imaging after reconstitution using Oregon-green-labeled Tm indicated the expected localization. Myofibrils remained mechanically viable: maximum isometric forces of myofibrils after sTm/sTn reconstitution (control) were comparable (~84%) to the forces generated by non-reconstituted preparations, and the reconstitution minimally affected the rate of isometric activation (kact), calcium sensitivity (pCa50), and cooperativity (nH). Reconstitutions using various combinations of cardiac and skeletal Tm and Tn indicated that isoforms of both Tm and Tn influence calcium sensitivity of force development in opposite directions, but the isoforms do not otherwise alter cross-bridge kinetics. Myofibrils reconstituted with Δ23Tm, a deletion mutant lacking the second and third of Tm’s seven quasi-repeats, exhibited greatly depressed maximal force, moderately slower kact rates and reduced nH. Δ23Tm similarly decreased the cooperativity of calcium binding to the troponin regulatory sites of isolated thin filaments in solution. The mechanisms behind these effects of Δ23Tm also were investigated using Pi and ADP jumps. Pi and ADP kinetics were indistinguishable in Δ23Tm myofibrils compared to controls. The results suggest that the deleted region of tropomyosin is important for cooperative thin filament activation by calcium

    Pica associated with iron deficiency or depletion: clinical and laboratory correlates in 262 non-pregnant adult outpatients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are many descriptions of the association of pica with iron deficiency in adults, but there are few reports in which observations available at diagnosis of iron deficiency were analyzed using multivariable techniques to identify significant predictors of pica. We sought to identify clinical and laboratory correlates of pica in adults with iron deficiency or depletion using univariable and stepwise forward logistic regression analyses.</p> <p>Methods</p> <p>We reviewed charts of 262 non-pregnant adult outpatients (ages ≥18 y) who required treatment with intravenous iron dextran. We tabulated their sex, age, race/ethnicity, body mass index, symptoms and causes of iron deficiency or depletion, serum iron and complete blood count measures, and other conditions at diagnosis before intravenous iron dextran was administered. We excluded patients with serum creatinine >133 μmol/L or disorders that could affect erythrocyte or iron measures. Iron deficiency was defined as both SF <45 pmol/L and TS <10%. Iron depletion was defined as serum ferritin (SF) <112 pmol/L. We performed univariable comparisons and stepwise forward logistic regression analyses to identify significant correlates of pica.</p> <p>Results</p> <p>There were 230 women (184 white, 46 black; ages 19-91 y) and 32 men (31 white, 1 black; ages 24-81 y). 118 patients (45.0%) reported pica; of these, 87.3% reported ice pica (pagophagia). In univariable analyses, patients with pica had lower mean age, black race/ethnicity, and higher prevalences of cardiopulmonary and epithelial manifestations. The prevalence of iron deficiency, with or without anemia, did not differ significantly between patients with and without pica reports. Mean hemoglobin and mean corpuscular volume (MCV) were lower and mean red blood cell distribution width (RDW) and platelet count were higher in patients with pica. Thrombocytosis occurred only in women and was more prevalent in those with pica (20.4% vs. 8.3%; p = 0.0050). Mean total iron-binding capacity was higher and mean serum ferritin was lower in patients with pica. Nineteen patients developed a second episode of iron deficiency or depletion; concordance of recurrent pica (or absence of pica) was 95%. Predictors of pica in logistic regression analyses were age and MCV (negative associations; p = 0.0250 and 0.0018, respectively) and RDW and platelet count (positive associations; p = 0.0009 and 0.02215, respectively); the odds ratios of these predictors were low.</p> <p>Conclusions</p> <p>In non-pregnant adult patients with iron deficiency or depletion, lower age is a significant predictor of pica. Patients with pica have lower MCV, higher RDW, and higher platelet counts than patients without pica.</p

    Turing conditions for pattern forming systems on evolving manifolds

    No full text
    The study of pattern-forming instabilities in reaction–diffusion systems on growing or otherwise time-dependent domains arises in a variety of settings, including applications in developmental biology, spatial ecology, and experimental chemistry. Analyzing such instabilities is complicated, as there is a strong dependence of any spatially homogeneous base states on time, and the resulting structure of the linearized perturbations used to determine the onset of instability is inherently non-autonomous. We obtain general conditions for the onset and structure of diffusion driven instabilities in reaction–diffusion systems on domains which evolve in time, in terms of the time-evolution of the Laplace–Beltrami spectrum for the domain and functions which specify the domain evolution. Our results give sufficient conditions for diffusive instabilities phrased in terms of differential inequalities which are both versatile and straightforward to implement, despite the generality of the studied problem. These conditions generalize a large number of results known in the literature, such as the algebraic inequalities commonly used as a sufficient criterion for the Turing instability on static domains, and approximate asymptotic results valid for specific types of growth, or specific domains. We demonstrate our general Turing conditions on a variety of domains with different evolution laws, and in particular show how insight can be gained even when the domain changes rapidly in time, or when the homogeneous state is oscillatory, such as in the case of Turing–Hopf instabilities. Extensions to higher-order spatial systems are also included as a way of demonstrating the generality of the approach

    Convective Heat Transfer In The Vertical Channel Flow Of A Clear Fluid Adjacent To A Nanofluid Layer: A Two-Fluid Model

    No full text
    A two-fluid vertical channel flow and convective heat transfer model in which one of the two fluids is a nanofluid demonstrates that the nanofluid can modify the fluid velocity at the interface of the two fluids, and can be used to reduce shear at both the surface of the clear fluid and the interface of the two fluids. Moreover, we find that the addition of a nanofluiod can favorably modify thermal properties of the fluid. © Springer-Verlag 2012

    Free Convection Boundary Layer Flow Past A Vertical Surface In A Porous Medium With Temperature-Dependent Properties

    No full text
    Numerical solutions for the free convection heat transfer in a viscous fluid at a permeable surface embedded in a saturated porous medium, in the presence of viscous dissipation with temperature-dependent variable fluid properties, are obtained. The governing equations for the problem are derived using the Darcy model and the Boussinesq approximation (with nonlinear density temperature variation in the buoyancy force term). The coupled non-linearities arising from the temperature-dependent density, viscosity, thermal conductivity, and viscous dissipation are included. The partial differential equations of the model are reduced to ordinary differential equations by a similarity transformation and the resulting coupled, nonlinear ordinary differential equations are solved numerically by a second order finite difference scheme for several sets of values of the parameters. Also, asymptotic results are obtained for large values of {pipe}fw{pipe}. Moreover, the numerical results for the velocity, the temperature, and the wall-temperature gradient are presented through graphs and tables, and are discussed. It is observed that by increasing the fluid variable viscosity parameter, one could reduce the velocity and thermal boundary layer thickness. However, quite the opposite is true with the non-linear density temperature variation parameter. © 2011 Springer Science+Business Media B.V

    Orbital Stability for Stationary Solutions of the Wadati–Konno–Ichikawa–Shimizu Equation

    No full text
    We determine the orbital stability properties of the space-periodic stationary solutions to the Wadati-Konno- Ichikawa-Shimizu (WKIS) equation previously obtained in R. A. Van Gorder: Prog. Theor. Phys. 128 (2012) 993. The stability result is completely analytic, whereas most results for similar equations are numerical. The method is concise and can be applied to a number of other derivative nonlinear Schrödinger (NLS) type equations admitting spaceperiodic stationary solutions. © 2013 The Physical Society of Japan

    Orbital Stability for Rotating Planar Vortex Filaments in the Cartesian and Arclength Forms of the Local Induction Approximation

    No full text
    The local induction approximation (LIA) is commonly used to study the motion of a vortex filament in a fluid. The fully nonlinear form of the LIA is equivalent to a type of derivative nonlinear Schrödinger (NLS) equation, and stationary solutions of this equation correspond to rotating planar vortex filaments. Such solutions were first discussed in the plane by Hasimoto [J. Phys. Soc. Jpn. 31 (1971) 293], and have been described both in Cartesian three-space and in the arclength formulation in subsequent works. Despite their interest, fully analytical stability results have been elusive. In the present paper, we present elegant and simple proofs of the orbital stability for the stationary solutions to the derivative nonlinear Schrödinger equations governing the self-induced motion of a vortex filament under the LIA, in both the extrinsic (Cartesian) and intrinsic (arclength) coordinate representations. Such results constitute an exact criterion for the orbital stability of rotating planar vortex filament solutions for the vortex filament problem under the LIA
    • …
    corecore