213 research outputs found

    Transport properties of clean and disordered Josephson junction arrays

    Full text link
    We investigate the influence of quantum fluctuations and weak disorder on the vortex dynamics in a two-dimensional superconducting Berezinskii-Kosterlitz-Thouless system. The temperature below which quantum fluctuations dominate the vortex creep is determined, and the transport in this quantum regime is described. The crossover from quantum to classical regime is discussed and the quantum correction to the classical current-voltage relation is determined. It is found that weak disorder can effectively reduce the critical current as compared to that in the clean system.Comment: 4 pages, 2 figure

    Non-exponential relaxation and hierarchically constrained dynamics in a protein

    Full text link
    A scaling analysis within a model of hierarchically constrained dynamics is shown to reproduce the main features of non-exponential relaxation observed in kinetic studies of carbonmonoxymyoglobin.Comment: 4 pages, 3 figures in text. Reference errors have been correcte

    Nuclear-resonant electron scattering

    Full text link
    We investigate nuclear-resonant electron scattering as occurring in the two-step process of nuclear excitation by electron capture (NEEC) followed by internal conversion. The nuclear excitation and decay are treated by a phenomenological collective model in which nuclear states and transition probabilities are described by experimental parameters. We present capture rates and resonant strengths for a number of heavy ion collision systems considering various scenarios for the resonant electron scattering process. The results show that for certain cases resonant electron scattering can have significantly larger resonance strengths than NEEC followed by the radiative decay of the nucleus. We discuss the impact of our findings on the possible experimental observation of NEEC.Comment: 24 pages, 2 plots, 5 table

    Theory of nuclear excitation by electron capture for heavy ions

    Full text link
    We investigate the resonant process of nuclear excitation by electron capture, in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy ion collision systems

    Nuclear effects in atomic transitions

    Full text link
    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.Comment: review article, 53 pages, 14 figure

    Photon angular distribution and nuclear-state alignment in nuclear excitation by electron capture

    Get PDF
    The alignment of nuclear states resonantly formed in nuclear excitation by electron capture (NEEC) is studied by means of a density matrix technique. The vibrational excitations of the nucleus are described by a collective model and the electrons are treated in a relativistic framework. Formulas for the angular distribution of photons emitted in the nuclear relaxation are derived. We present numerical results for alignment parameters and photon angular distributions for a number of heavy elements in the case of E2 nuclear transitions. Our results are intended to help future experimental attempts to discern NEEC from radiative recombination, which is the dominant competing process

    The Order of Phase Transitions in Barrier Crossing

    Full text link
    A spatially extended classical system with metastable states subject to weak spatiotemporal noise can exhibit a transition in its activation behavior when one or more external parameters are varied. Depending on the potential, the transition can be first or second-order, but there exists no systematic theory of the relation between the order of the transition and the shape of the potential barrier. In this paper, we address that question in detail for a general class of systems whose order parameter is describable by a classical field that can vary both in space and time, and whose zero-noise dynamics are governed by a smooth polynomial potential. We show that a quartic potential barrier can only have second-order transitions, confirming an earlier conjecture [1]. We then derive, through a combination of analytical and numerical arguments, both necessary conditions and sufficient conditions to have a first-order vs. a second-order transition in noise-induced activation behavior, for a large class of systems with smooth polynomial potentials of arbitrary order. We find in particular that the order of the transition is especially sensitive to the potential behavior near the top of the barrier.Comment: 8 pages, 6 figures with extended introduction and discussion; version accepted for publication by Phys. Rev.

    Dissociation in a polymerization model of homochirality

    Full text link
    A fully self-contained model of homochirality is presented that contains the effects of both polymerization and dissociation. The dissociation fragments are assumed to replenish the substrate from which new monomers can grow and undergo new polymerization. The mean length of isotactic polymers is found to grow slowly with the normalized total number of corresponding building blocks. Alternatively, if one assumes that the dissociation fragments themselves can polymerize further, then this corresponds to a strong source of short polymers, and an unrealistically short average length of only 3. By contrast, without dissociation, isotactic polymers becomes infinitely long.Comment: 16 pages, 6 figures, submitted to Orig. Life Evol. Biosp
    corecore