29 research outputs found
Aerogel-based metasurfaces for perfect acoustic energy absorption
[EN] The unusual viscoelastic properties of silica aerogel plates are efficiently used to design subwavelength perfect sound absorbers. We theoretically, numerically and experimentally report a perfect absorbing metamaterial panel made of periodically arranged resonant building blocks consisting of a slit loaded by a clamped aerogel plate backed by a closed cavity. The impedance matching condition is analyzed using the Argand diagram of the reflection coefficient, i.e., the trajectory of the reflection coefficient as a function of frequency in the complex plane. The lack or excess of losses in the system can be identified via this Argrand diagram in order to achieve the impedance matching condition. The universality of this tool can be further exploited to design more complex metasurfaces for perfect sound absorption, thus allowing the rapid design of novel and efficient absorbing metamaterials.This work was funded by the RFI Le Mans Acoustique, Region Pays de la Loire. This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology). N.J. acknowledges financial support from Generalitat Valenciana through Grant No. APOSTD/2017/042. J.-P.G and V.R.G. gratefully acknowledge the ANR-RGC METARoom (No. ANR-18-CE08-0021) project and the HYPERMETA project funded under the program Etoiles Montantes of the Region Pays de la Loire. J.S-D. acknowledges the support of the Ministerio de Economia y Competitividad of the Spanish government and the European Union FEDER through Project No. TEC2014-53088-C3-1-RFernandez-Marin, AA.; Jimenez, N.; Groby, J.; SĂĄnchez-Dehesa Moreno-Cid, J.; Romero GarcĂa, V. (2019). Aerogel-based metasurfaces for perfect acoustic energy absorption. Applied Physics Letters. 115(6):061901-1-061901-5. https://doi.org/10.1063/1.5109084S061901-1061901-51156Gesser, H. D., & Goswami, P. C. (1989). Aerogels and related porous materials. Chemical Reviews, 89(4), 765-788. doi:10.1021/cr00094a003Herrmann, G., Iden, R., Mielke, M., Teich, F., & Ziegler, B. (1995). On the way to commercial production of silica aerogel. Journal of Non-Crystalline Solids, 186, 380-387. doi:10.1016/0022-3093(95)90076-4Fricke, J., Lu, X., Wang, P., BĂŒttner, D., & Heinemann, U. (1992). Optimization of monolithic silica aerogel insulants. International Journal of Heat and Mass Transfer, 35(9), 2305-2309. doi:10.1016/0017-9310(92)90073-2Gerlach, R., Kraus, O., Fricke, J., Eccardt, P.-C., Kroemer, N., & Magori, V. (1992). Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices. Journal of Non-Crystalline Solids, 145, 227-232. doi:10.1016/s0022-3093(05)80461-2Gibiat, V., Lefeuvre, O., Woignier, T., Pelous, J., & Phalippou, J. (1995). Acoustic properties and potential applications of silica aerogels. Journal of Non-Crystalline Solids, 186, 244-255. doi:10.1016/0022-3093(95)00049-6Ma, G., Yang, M., Xiao, S., Yang, Z., & Sheng, P. (2014). Acoustic metasurface with hybrid resonances. Nature Materials, 13(9), 873-878. doi:10.1038/nmat3994Yang, M., Meng, C., Fu, C., Li, Y., Yang, Z., & Sheng, P. (2015). Subwavelength total acoustic absorption with degenerate resonators. Applied Physics Letters, 107(10), 104104. doi:10.1063/1.4930944Romero-GarcĂa, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., & Pagneux, V. (2016). Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Scientific Reports, 6(1). doi:10.1038/srep19519Li, Y., & Assouar, B. M. (2016). Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Applied Physics Letters, 108(6), 063502. doi:10.1063/1.4941338JimĂ©nez, N., Huang, W., Romero-GarcĂa, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902. doi:10.1063/1.4962328Peng, X., Ji, J., & Jing, Y. (2018). Composite honeycomb metasurface panel for broadband sound absorption. The Journal of the Acoustical Society of America, 144(4), EL255-EL261. doi:10.1121/1.5055847Yang, M., Ma, G., Yang, Z., & Sheng, P. (2013). Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus. Physical Review Letters, 110(13). doi:10.1103/physrevlett.110.134301Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301Zhang, J., Romero-GarcĂa, V., Theocharis, G., Richoux, O., Achilleos, V., & Frantzeskakis, D. (2016). Second-Harmonic Generation in Membrane-Type Nonlinear Acoustic Metamaterials. Crystals, 6(8), 86. doi:10.3390/cryst6080086Zhang, J., Romero-GarcĂa, V., Theocharis, G., Richoux, O., Achilleos, V., & Frantzeskakis, D. J. (2017). Bright and gap solitons in membrane-type acoustic metamaterials. Physical Review E, 96(2). doi:10.1103/physreve.96.022214Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary crossâsectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379Kergomard, J., & Garcia, A. (1987). Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae. Journal of Sound and Vibration, 114(3), 465-479. doi:10.1016/s0022-460x(87)80017-2M. J. Powell , in Numerical Analysis ( Springer, 1978) pp. 144â157.Groby, J.-P., Huang, W., Lardeau, A., & AurĂ©gan, Y. (2015). The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics, 117(12), 124903. doi:10.1063/1.4915115JimĂ©nez, N., Groby, J.-P., Pagneux, V., & Romero-GarcĂa, V. (2017). Iridescent Perfect Absorption in Critically-Coupled Acoustic Metamaterials Using the Transfer Matrix Method. Applied Sciences, 7(6), 618. doi:10.3390/app706061
Iterated maps for clarinet-like systems
The dynamical equations of clarinet-like systems are known to be reducible to
a non-linear iterated map within reasonable approximations. This leads to time
oscillations that are represented by square signals, analogous to the Raman
regime for string instruments. In this article, we study in more detail the
properties of the corresponding non-linear iterations, with emphasis on the
geometrical constructions that can be used to classify the various solutions
(for instance with or without reed beating) as well as on the periodicity
windows that occur within the chaotic region. In particular, we find a regime
where period tripling occurs and examine the conditions for intermittency. We
also show that, while the direct observation of the iteration function does not
reveal much on the oscillation regime of the instrument, the graph of the high
order iterates directly gives visible information on the oscillation regime
(characterization of the number of period doubligs, chaotic behaviour, etc.)
Investigation of Polyurea-Crosslinked Silica Aerogels as a Neuronal Scaffold: A Pilot Study
BACKGROUND: Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. however, the interaction of neurons with aerogels remains to be investigated. METHODOLOGY: In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration
Elastic wave propagation in a three-dimensional periodic granular medium
We present an experimental study of acoustic wave propagation in
granular media made of mono-disperse spherical beads under stress
and periodically arranged. A previous work presented the
predominance of multiple-scattered acoustic waves for random
closed-packing granular media, whereas our experimental results
lead to the conclusion that the acoustical propagation in our
arrangement of spherical beads proceeds essentially from surface
waves. This provides another mechanism for the understanding of
acoustical wave propagation in granular media, that may be useful
at least to analyse weak disorder ones
SUIVI DU FONDAMENTAL DE SIGNAUX MUSICAUX Ă HAUTE RĂSOLUTION TEMPORELLE
le suivi du fondamental trÚs utilisé dans le domaine du traitement de la parole reste en comparaison un outil relativement peu employé dans le cadre de l'acoustique musicale. Hormis quelques applications spécifiques, son emploi n'est souvent que le résultat d'une analyse du spectre de puissance à court terme. L'Analyse Spectrale Différentielle déjà testée en particulier dans le traitement de la parole nous a semblée autoriser une bonne précision temporelle et fréquentielle. Cette technique simple, permet d'obtenir avec des moyens légers une information précise sur l'évolution des fréquences dans le signal. Nous avons ainsi obtenu sur des signaux courts d'instruments à vent des informations sur l'évolution de la hauteur émise lors de l'attaque et pendant le son tenu ainsi que pour des variations de l'émission de pianissimo à fortissimo. On peut également, sur des phrases musicales longues, détecter trÚs précisément la note jouée ainsi que l'écart en cents avec le tempérament égal, réalisant ainsi un détecteur de mélodie relativement simple.pitch extraction is a common tool in speech processing, but seems less used in musical acoustics. It is often obtained through short time power spectra which does not allow precise information. Differential Spectral Analysis allows an easy extraction of the main frequencies present in a signal. We have obtained upon short signals (1 second) from woodwinds, a great deal of informations on pitch variations. One also can, on long duration musical sentences, determine very precisely the note played and the discrepancy in cents with the equal tempered pitch
MESURES D'IMPĂDANCES, DE FONCTIONS DE RĂFLEXION ET D'HARMONICITĂ D'INSTRUMENTS Ă VENT
La mĂ©thode de mesure de l'impĂ©dance d'entrĂ©e des instruments Ă vent dite T.M.T.C. que nous avons dĂ©veloppĂ© rĂ©cemment permet grĂące Ă deux mesures simultanĂ©es de pression et Ă une calibration en trois points d'obtenir l'impĂ©dance d'entrĂ©e d'instruments Ă vent de diamĂštres variĂ©s avec un seul dispositif de mesure dont les imperfections gĂ©omĂ©triques acoustiques et Ă©lectriques sont automatiquement prises en compte. L'utilisation systĂ©matique de la micro-informatique et de la saisie numĂ©rique permet de disposer d'un outil souple et rapide. Il est ainsi possible de calculer Ă partir de la mesure d'impĂ©dance la fonction de rĂ©flexion de l'instrument Ă©tudiĂ© ainsi que toute autre fonction temporelle. La mesure prĂ©cise des positions des maximums d'impĂ©dance peut Ă©galement ĂȘtre interprĂ©tĂ©e en fonction de leur rang et donner une indication sur l'harmonicitĂ© ou l'inharmonicitĂ© des rĂ©sonances de l'instrument et donc sur sa qualitĂ©.We have developped recently the T.M.T.C method in order to measure the input impedance of woodwinds. This method allows us with a two pressure measurement and a three calibration technic to obtain the impedance of various diameter instruments and to correct a lot of systematics such as geometrical imperfections, microphone admittance, .... The intensive use of micro-computing and numerical acquisition gives us a powerful and fast tool. We are able to compute from the impedance the reflection function or any other time domain function. The knowledge of the frequency position of the impedance peak gives an information of the quality of an instrument by drawing the harmonicity or inharmonicity curve of the instrument
Application expérimentale du bilan de puissance réactive à la mesure de l'anche de saxophone
The reactive power balance approach is capable of linking the dynamics of a reed represented by a spring and that of the resonator which is played. A simple-reed instrument do not play exactly at the frequencies of the impedance peaks. Therefore, each mode of the pipe absorbs (or provides) reactive power. Their sum is equal to that provided by the spring which stands for the reed in our model. We have experimentally determined the input impedance of a saxophone and its internal spectrum for various notes and playing conditions. The model yields a value for the stiffness of the reed when played by a machine or a musician. The measured values are consistent with those given by the literature on isolated reeds.La notion de bilan de puissance réactive permet de lier le fonctionnement d'une anche modélisée par un ressort à celui du résonateur qu'elle excite. Un instrument à anche simple ne joue pas exactement sur les fréquences des pics d'impédance. Chaque partiel du tuyau absorbe donc (ou fournit) une puissance réactive. Leur somme algébrique est égale à celle fournie par le ressort qui représente l'anche. Sur le plan expérimental, nous avons mesuré le spectre de pression interne d'un saxophone et son impédance d'entrée pour différentes notes et nuances. La modélisation précédente permet d'obtenir une détermination de la raideur de l'anche en situation de jeu. Les valeurs mesurées sont voisines de celles relevées dans la littérature sur des anches isolées
ANALYSE TEMPORELLE DES SIGNAUX ĂMIS PAR DES SYSTĂMES ANCHES RĂSONNATEURS
L'Ă©tude des signaux acoustiques musicaux Ă©mis par des systĂšmes anche couplĂ©e Ă un rĂ©sonateur est envisagĂ©e dans le domaine temporel. Les progrĂšs techniques de l'acquisition numĂ©rique rĂ©alisĂ©s ces derniĂšres annĂ©es permettent dĂ©sormais d'Ă©tudier finement les Ă©vĂ©nements temporels et d'effectuer des mesures prĂ©cises sur les signaux. Nous avons Ă©tudiĂ© deux systĂšmes diffĂ©rents : le premier non entretenu, la guimbarde et le second entretenu, (donc Ă couplage non linĂ©aire) la clarinette. Les deux donnent des rĂ©sultats similaires qui s'intĂšgrent facilement dans un schĂ©ma mĂȘme trĂšs simple du fonctionnement de l'instrument. Il devient dĂšs lors possible d'envisager des mesures de caractĂ©ristiques mĂ©caniques sur les anches en fonctionnement.We have studied the signals produced by musical acoustical systems with a reed coupled to a resonator in a temporal point of view. With the help of modern numerical systems of acquisition we are now able to obtain precise measurements upon the time, domain signal. We have studied two different systems : a jew-harp and a clarinet (which is a non linear system). These instruments give the same kind of results which can be easily understand with a very simple model of their functionnement. So it is possible with such an analysis to obtain informations on the behavior of reeds during the production of sound
Wave Guide Imaging through Time Domain Topological Energy
AbstractTime Domain Topological Energy (TDTE), uses a measure of the reflected ultrasonic field on an array of transducers placed on the boundary of the imaged medium. Two numerical determinations (direct and adjoint problems) of the acoustical field inside a reference medium are then necessary to obtain the image by computing the topological energy. This technique comes from the field of shape optimisation and mathematical developments for Non Destructive Testing and have shown close links with Time Reversal (TR) concepts. TR mirrors have been employed for various applications in a wide number of situations including wave guides (WG) where very good refocalisation performances have been obtained with a reduced number of transducers instead of an array. Moreover recent works have enlighten that the reverberation properties of a WG allow to re-focalise using TR with only one transducer. For TDTE imaging we choose to model a single transducer placed at one end of a wave guide. The boundaries of the WG create virtual sources that can be understood as a virtual array of transducers. Results obtained numerically for imaging using both TDTE and one transducer in a wave guide with increasing complexity : a hard spherical object and a set of three identical objects placed at the angles of an equilateral triangle are presented and preliminary experimental results are discussed
Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media
Periodic patterns built with elementary Von Koch snowflakes have been found to be a good structural representation of nanoporous media (like monolithic silica aerogels) concerning the characterization of heat conduction. These geometries allow the modeling of different pore sizes, fractality and isotropy of the complex structure. A numerical model has been used to determine the effective thermal conductivity as a function of two parameters: density and tortuosity. The results âwhich match with an analytical model presented in the literatureâ are compared to simple periodic and random fractal geometries