93 research outputs found

    Quantum walks on general graphs

    Full text link
    Quantum walks, both discrete (coined) and continuous time, on a general graph of N vertices with undirected edges are reviewed in some detail. The resource requirements for implementing a quantum walk as a program on a quantum computer are compared and found to be very similar for both discrete and continuous time walks. The role of the oracle, and how it changes if more prior information about the graph is available, is also discussed.Comment: 8 pages, v2: substantial rewrite improves clarity, corrects errors and omissions; v3: removes major error in final section and integrates remainder into other sections, figures remove

    Representing Partitions on Trees

    Get PDF
    In evolutionary biology, biologists often face the problem of constructing a phylogenetic tree on a set X of species from a multiset Π of partitions corresponding to various attributes of these species. One approach that is used to solve this problem is to try instead to associate a tree (or even a network) to the multiset ΣΠ consisting of all those bipartitions {A,X − A} with A a part of some partition in Π. The rational behind this approach is that a phylogenetic tree with leaf set X can be uniquely represented by the set of bipartitions of X induced by its edges. Motivated by these considerations, given a multiset Σ of bipartitions corresponding to a phylogenetic tree on X, in this paper we introduce and study the set P(Σ) consisting of those multisets of partitions Π of X with ΣΠ = Σ. More specifically, we characterize when P(Σ) is non-empty, and also identify some partitions in P(Σ) that are of maximum and minimum size. We also show that it is NP-complete to decide when P(Σ) is non-empty in case Σ is an arbitrary multiset of bipartitions of X. Ultimately, we hope that by gaining a better understanding of the mapping that takes an arbitrary partition system Π to the multiset ΣΠ, we will obtain new insights into the use of median networks and, more generally, split-networks to visualize sets of partitions

    Computation by measurements: a unifying picture

    Get PDF
    The ability to perform a universal set of quantum operations based solely on static resources and measurements presents us with a strikingly novel viewpoint for thinking about quantum computation and its powers. We consider the two major models for doing quantum computation by measurements that have hitherto appeared in the literature and show that they are conceptually closely related by demonstrating a systematic local mapping between them. This way we effectively unify the two models, showing that they make use of interchangeable primitives. With the tools developed for this mapping, we then construct more resource-effective methods for performing computation within both models and propose schemes for the construction of arbitrary graph states employing two-qubit measurements alone.Comment: 13 pages, 18 figures, REVTeX

    Approximating the Minimum Equivalent Digraph

    Full text link
    The MEG (minimum equivalent graph) problem is, given a directed graph, to find a small subset of the edges that maintains all reachability relations between nodes. The problem is NP-hard. This paper gives an approximation algorithm with performance guarantee of pi^2/6 ~ 1.64. The algorithm and its analysis are based on the simple idea of contracting long cycles. (This result is strengthened slightly in ``On strongly connected digraphs with bounded cycle length'' (1996).) The analysis applies directly to 2-Exchange, a simple ``local improvement'' algorithm, showing that its performance guarantee is 1.75.Comment: conference version in ACM-SIAM Symposium on Discrete Algorithms (1994

    Parallel iterative solvers for real-time elastic deformations

    Get PDF
    Physics-based animation of elastic materials allows to simulate dynamic deformable objects such as fabrics, human tissue, hair, etc. Due to their complex inner mechanical behaviour, it is difficult to replicate their motions interactively and accurately at the same time. This course introduces students and practitioners to several parallel iterative techniques to tackle this problem and achieve elastic deformations in real-time. We focus on techniques for applications such as video games and interactive design, with\ua0fixed and small hard time budgets\ua0available for physically-based animation, and where responsiveness and stability are often more important than accuracy, as long as the results are believable. The course focuses on solvers able to fully exploit the computational capabilities of modern GPU architectures, effectively solving systems of hundreds of thousands of nonlinear equations in a matter of few milliseconds. The course introduces the basic concepts concerning physics-based elastic objects, and provide an overview of the different types of numerical solvers available in the literature. Then, we show how some variants of traditional solvers can address real-time animation and assess them in terms of accuracy, robustness and performance. Practical examples are provided throughout the course, in particular how to apply the depicted solvers to Projective Dynamics and Position-based Dynamics, two recent and popular physics models for elastic materials

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let kNk \in \mathbb{N} and let GG be a graph. A function f:V(G)2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of xV(G)f(x)\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    Quantum-circuit design for efficient simulations of many-body quantum dynamics

    Full text link
    We construct an efficient autonomous quantum-circuit design algorithm for creating efficient quantum circuits to simulate Hamiltonian many-body quantum dynamics for arbitrary input states. The resultant quantum circuits have optimal space complexity and employ a sequence of gates that is close to optimal with respect to time complexity. We also devise an algorithm that exploits commutativity to optimize the circuits for parallel execution. As examples, we show how our autonomous algorithm constructs circuits for simulating the dynamics of Kitaev's honeycomb model and the Bardeen-Cooper-Schrieffer model of superconductivity. Furthermore we provide numerical evidence that the rigorously proven upper bounds for the simulation error here and in previous work may sometimes overestimate the error by orders of magnitude compared to the best achievable performance for some physics-inspired simulations.Comment: 20 Pages, 6 figure

    A Unified Approach to Distance-Two Colouring of Graphs on Surfaces

    Full text link
    In this paper we introduce the notion of Σ\Sigma-colouring of a graph GG: For given subsets Σ(v)\Sigma(v) of neighbours of vv, for every vV(G)v\in V(G), this is a proper colouring of the vertices of GG such that, in addition, vertices that appear together in some Σ(v)\Sigma(v) receive different colours. This concept generalises the notion of colouring the square of graphs and of cyclic colouring of graphs embedded in a surface. We prove a general result for graphs embeddable in a fixed surface, which implies asymptotic versions of Wegner's and Borodin's Conjecture on the planar version of these two colourings. Using a recent approach of Havet et al., we reduce the problem to edge-colouring of multigraphs, and then use Kahn's result that the list chromatic index is close to the fractional chromatic index. Our results are based on a strong structural lemma for graphs embeddable in a fixed surface, which also implies that the size of a clique in the square of a graph of maximum degree Δ\Delta embeddable in some fixed surface is at most 32Δ\frac32\,\Delta plus a constant.Comment: 36 page

    Generalized ramsey theory for graphs, I. Diagonal numbers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43187/1/10998_2005_Article_BF02018466.pd
    corecore