49 research outputs found

    High prevalence of anti-C1q antibodies in biopsy-proven active lupus nephritis

    Get PDF
    BACKGROUND: Anti-C1q antibodies (anti-C1q) have been shown to correlate positively with systemic lupus erythematosus (SLE) nephritis. Several clinical studies indicated a high negative predictive value, suggesting that active lupus nephritis is rarely seen in patients with no anti-C1q. However, the true prevalence of anti-C1q at the time of active lupus nephritis has not been well established. The aim of this study was to determine prospectively the prevalence of anti-C1q in proven active lupus nephritis at the time of the renal biopsy. METHODS: In this prospective multi-centre study, we investigated adult SLE patients undergoing renal biopsy for suspected active lupus nephritis. Serum samples were taken at the time of the biopsy and analysed for the presence of anti-C1q in a standardized way. The activity of lupus nephritis was classified according to the renal histology. Biopsies were also analysed for the presence of glomerular IgG, C1q and C3 deposition. RESULTS: A total of 38 patients fulfilling at least 4/11 American College of Rheumatology (ACR) criteria for the diagnosis of SLE were included. Out of this, 36 patients had proliferative (class II, III or IV) and two had class V lupus nephritis. All but one patient with proliferative lupus nephritis were positive for anti-C1q (97.2%) compared with the 35% of control SLE patients with inactive lupus nephritis and 25% of SLE patients without lupus nephritis ever. All patients were positive for glomerular C1q (36/36) and 37/38 patients had glomerular IgG deposits. Anti-C1q strongly decreased during successful treatment. CONCLUSIONS: Anti-C1q have a very high prevalence in biopsy-proven active lupus nephritis, thus a negative test result almost excludes active nephritis. The data support the hypothesis of a pathogenic role of anti-C1q in lupus nephritis

    Atypical hemolytic uremic syndrome in children: complement mutations and clinical characteristics

    Get PDF
    Item does not contain fulltextBACKGROUND: Mutations in complement factor H (CFH), factor I (CFI), factor B (CFB), thrombomodulin (THBD), C3 and membrane cofactor protein (MCP), and autoantibodies against factor H (alphaFH) with or without a homozygous deletion in CFH-related protein 1 and 3 (CFHR1/3) predispose development of atypical hemolytic uremic syndrome (aHUS). METHODS: Different mutations in genes encoding complement proteins in 45 pediatric aHUS patients were retrospectively linked with clinical features, treatment, and outcome. RESULTS: In 47% of the study participants, potentially pathogenic genetic anomalies were found (5xCFH, 4xMCP, and 4xC3, 3xCFI, 2xCFB, 6xalphaFH, of which five had CFHR1/3); four patients carried combined genetic defects or a mutation, together with alphaFH. In the majority (87%), disease onset was preceeded by a triggering event; in 25% of cases diarrhea was the presenting symptom. More than 50% had normal serum C3 levels at presentation. Relapses were seen in half of the patients, and there was renal graft failure in all except one case following transplant. CONCLUSIONS: Performing adequate DNA analysis is essential for treatment and positive outcome in children with aHUS. The impact of intensive initial therapy and renal replacement therapy, as well as the high risk of recurrence of aHUS in renal transplant, warrants further understanding of the pathogenesis, which will lead to better treatment options.01 augustus 201

    Thrombotic microangiopathy in aHUS and beyond: clinical clues from complement genetics.

    No full text
    Studies of complement genetics have changed the landscape of thrombotic microangiopathies (TMAs), particularly atypical haemolytic uraemic syndrome (aHUS). Knowledge of complement genetics paved the way for the design of the first specific treatment for aHUS, eculizumab, and is increasingly being used to aid decisions regarding discontinuation of anti-complement treatment in this setting. Complement genetic studies have also been used to investigate the pathogenic mechanisms that underlie other forms of HUS and provided evidence that contributed to the reclassification of pregnancy- and postpartum-associated HUS within the spectrum of complement-mediated aHUS. By contrast, complement genetics has not provided definite evidence of a link between constitutional complement dysregulation and secondary forms of HUS. Therefore, the available data do not support systematic testing of complement genes in patients with typical HUS or secondary HUS. The potential relevance of complement genetics for distinguishing the underlying mechanisms of malignant hypertension-associated TMA should be assessed with caution owing to the overlap between aHUS and other causes of malignant hypertension. In all cases, the interpretation of complement genetics results remains complex, as even complement-mediated aHUS is not a classical monogenic disease. Such interpretation requires the input of trained geneticists and experts who have a comprehensive view of complement biology

    The Rational Use of Complement Inhibitors in Kidney Diseases.

    No full text
    The development of complement inhibitors represented one of the major breakthroughs in clinical nephrology in the last decade. Complement inhibition has dramatically transformed the outcome of one of the most severe kidney diseases, the atypical hemolytic uremic syndrome (aHUS), a prototypic complement-mediated disorder. The availability of complement inhibitors has also opened new promising perspectives for the management of several other kidney diseases in which complement activation is involved to a variable extent. With the rapidly growing number of complement inhibitors tested in a rapidly increasing number of indications, a rational use of this innovative and expensive new therapeutic class has become crucial. The present review aims to summarize what we know, and what we still ignore, regarding complement activation and therapeutic inhibition in kidney diseases. It also provides some clues and elements of thoughts for a rational approach of complement modulation in kidney diseases

    Blockade of C5 in Severe Acute Postinfectious Glomerulonephritis Associated With Anti-Factor H Autoantibody.

    No full text
    Activation of the complement cascade plays an important role in the pathogenesis of postinfectious glomerulonephritis. We report successful terminal complement pathway blockade using an anti-C5 monoclonal antibody (eculizumab) in an 8-year-old child with severe acute postinfectious glomerulonephritis requiring hemodialysis. The child presented with clinical, serologic, and histopathologic criteria for diffuse crescentic postinfectious glomerulonephritis. Complement measurements showed low C3 and C4 levels, with increased SC5b-9 titers. The presence of a transient anti-factor H autoantibody was also identified. Eculizumab (600mg, 2 doses at a 1-week interval) was administered, with a striking recovery of kidney function. There were no additional hemodialysis sessions needed after the first dose of eculizumab, and glomerular filtration rate measured using inulin clearance at 12 months of follow-up was within the normal range (92mL/min/1.73m(2)). Prompt terminal complement blockade may have improved the outcome in this case of severe acute postinfectious glomerulonephritis
    corecore