22,016 research outputs found

    TB in disasters.

    Get PDF

    Do Aid Agencies Have an Ethical Duty to Comply with Researchers? A Response to Rennie.

    Get PDF
    Medical AID organisations such as MĆ©decins Sans FrontiĆØres receive several requests from individuals and international academic institutions to conduct research at their implementation sites in Africa. Do AID agencies have an ethical duty to comply with research requests? In this paper we respond to the views and constructed theories (albeit unfounded) of one such researcher, whose request to conduct research at one of our sites in the Democratic Republic of Congo was turned down

    Characterising small solutions in delay differential equations through numerical approximations

    Get PDF
    This paper discusses how the existence of small solutions for delay differential equations can be predicted from the behaviour of the spectrum of the finite dimensional approximations.Manchester Centre for Computational Mathematic

    Focusing Vacuum Fluctuations II

    Full text link
    The quantization of the scalar and electromagnetic fields in the presence of a parabolic mirror is further developed in the context of a geometric optics approximation. We extend results in a previous paper to more general geometries, and also correct an error in one section of that paper. We calculate the mean squared scalar and electric fields near the focal line of a parabolic cylindrical mirror. These quantities are found to grow as inverse powers of the distance from the focus. We give a combination of analytic and numerical results for the mean squared fields. In particular, we find that the mean squared electric field can be either negative or positive, depending upon the choice of parameters. The case of a negative mean squared electric field corresponds to a repulsive Van der Waals force on an atom near the focus, and to a region of negative energy density. Similarly, a positive value corresponds to an attractive force and a possibility of atom trapping in the vicinity of the focus.Comment: 26 pages, 15 figures; additional discussion added in Sects. IV and I

    Neutrinoless Double Beta Decay with SNO+

    Get PDF
    SNO+ will search for neutrinoless double beta decay by loading 780 tonnes of linear alkylbenzene liquid scintillator with O(tonne) of neodymium. Using natural Nd at 0.1% loading will provide 43.7 kg of 150Nd given its 5.6% abundance and allow the experiment to reach a sensitivity to the effective neutrino mass of 100-200 meV at 90% C.L in a 3 year run. The SNO+ detector has ultra low backgrounds with 7000 tonnes of water shielding and self-shielding of the scintillator. Distillation and several other purification techniques will be used with the aim of achieving Borexino levels of backgrounds. The experiment is fully funded and data taking with light-water will commence in 2012 with scintillator data following in 2013.Comment: 4 pages, 2 figures, prepared for TAUP 201

    Does the Third Law of Thermodynamics hold in the Quantum Regime?

    Get PDF
    The first in a long series of papers by John T. Lewis, G. W. Ford and the present author, considered the problem of the most general coupling of a quantum particle to a linear passive heat bath, in the course of which they derived an exact formula for the free energy of an oscillator coupled to a heat bath in thermal equilibrium at temperature T. This formula, and its later extension to three dimensions to incorporate a magnetic field, has proved to be invaluable in analyzing problems in quantum thermodynamics. Here, we address the question raised in our title viz. Nernst's third law of thermodynamics

    Gravitons and Lightcone Fluctuations II: Correlation Functions

    Get PDF
    A model of a fluctuating lightcone due to a bath of gravitons is further investigated. The flight times of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime, and will form a Gaussian distribution centered around the classical flight time. However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive and discuss a correlation function which describes this effect. This enables us to understand more fully the operational significance of a fluctuating lightcone. Our results may be combined with observational data on pulsar timing to place some constraints on the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps
    • ā€¦
    corecore