209 research outputs found

    Benchmarking acid and base dopants with respect to enabling the ice V to XIII and ice VI to XV hydrogen-ordering phase transitions

    Full text link
    Doping the hydrogen-disordered phases of ice V, VI and XII with hydrochloric acid (HCl) has led to the discovery of their hydrogen-ordered counterparts ices XIII, XV and XIV. Yet, the mechanistic details of the hydrogen-ordering phase transitions are still not fully understood. This includes in particular the role of the acid dopant and the defect dynamics that it creates within the ices. Here we investigate the effects of several acid and base dopants on the hydrogen ordering of ices V and VI with calorimetry and X-ray diffraction. HCl is found to be most effective for both phases which is attributed to a favourable combination of high solubility and strong acid properties which create mobile H3O+ defects that enable the hydrogen-ordering processes. Hydrofluoric acid (HF) is the second most effective dopant highlighting that the acid strengths of HCl and HF are much more similar in ice than they are in liquid water. Surprisingly, hydrobromic acid doping facilitates hydrogen ordering in ice VI whereas only a very small effect is observed for ice V. Conversely, lithium hydroxide (LiOH) doping achieves a performance comparable to HF-doping in ice V but it is ineffective in the case of ice VI. Sodium hydroxide, potassium hydroxide (as previously shown) and perchloric acid doping are ineffective for both phases. These findings highlight the need for future computational studies but also raise the question why LiOH-doping achieves hydrogen-ordering of ice V whereas potassium hydroxide doping is most effective for the 'ordinary' ice Ih.Comment: 18 pages, 7 figures, 1 tabl

    Dupuytren's disease in bosnia and herzegovina. An epidemiological study

    Get PDF
    BACKGROUND: It is generally held that Dupuytren's disease is more common in northern than in southern Europe, but there are very few studies from southern European countries. METHODS: We examined the hands of 1207 men and women over the age of 50 years in Bosnia and Herzegovina. RESULTS: The prevalence of Dupuytren's disease was highly age-dependent, ranging from 17% for men between 50–59 years to 60% in the oldest men. The prevalence among women was lower. The great majority only had palmar changes without contracture of the digit. The prevalence was significantly lower among Bosnian Muslim men than among Bosnian Croat and Serbian men and significantly increased among diabetics. No association could be detected between Dupuytren's disease and smoking, alcohol consumption or living in rural or urban areas. CONCLUSION: We conclude that, contrary to previous opinion, Dupuytren's disease is common in Bosnia and Herzegovina

    Dipole-Oriented Molecular Solids Can Undergo a Phase Change and Still Maintain Electrical Polarization

    Get PDF
    It has recently been demonstrated that nanoscale molecular films can spontaneously assemble to self-generate intrinsic electric fields that can exceed 108 V/m. These electric fields originate from polarization charges in the material that arise because the films self-assemble to orient molecular dipole moments. This has been called the spontelectric effect. Such growth of spontaneously polarized layers of molecular solids has implications for our understanding of how intermolecular interactions dictate the structure of molecular materials used in a range of applications, for example, molecular semiconductors, sensors, and catalysts. Here we present the first in situ structural characterization of a representative spontelectric solid, nitrous oxide. Infrared spectroscopy, temperature-programmed desorption, and neutron reflectivity measurements demonstrate that polarized films of nitrous oxide undergo a structural phase transformation upon heating above 48 K. A mean-field model can be used to describe quantitatively the magnitude of the spontaneously generated field as a function of film-growth temperature, and this model also recreates the phase change. This reinforces the spontelectric model as a means of describing long-range dipole–dipole interactions and points to a new type of ordering in molecular thin film

    Are osteoporotic fractures being adequately investigated?: A questionnaire of GP & orthopaedic surgeons

    Get PDF
    BACKGROUND: To investigate the current practice of Orthopaedic Surgeons & General Practitioners (GP) when presented with patients who have a fracture, with possible underlying Osteoporosis. METHODS: Questionnaires were sent to 140 GPs and 140 Orthopaedic Surgeons. The participants were asked their routine clinical practice with regard to investigation of underlying osteoporosis in 3 clinical scenarios. 55 year old lady with a low trauma Colles fracture 60 year old lady with a vertebral wedge fracture 70 year old lady with a low trauma neck of femur fracture. RESULTS: Most doctors agreed that patients over 50 years old with low trauma fractures required investigation for osteoporosis, however, most surgeons (56%, n = 66) would discharge patients with low trauma Colles fracture without requesting or initiating investigation for osteoporosis. Most GPs (67%, n = 76) would not investigate a similar patient for osteoporosis, unless prompted by the Orthopaedic Surgeon or patient. More surgeons (71%, n= 83) and GPs (64%, n = 72) would initiate investigations for osteoporosis in a vertebral wedge fracture, but few surgeons (35%, n = 23) would investigate a neck of femur fracture patient after orthopaedic treatment. CONCLUSION: Most doctors know that fragility fractures in patients over 50 years old require investigation for Osteoporosis; however, a large population of patients with osteoporotic fractures are not being given the advantages of secondary prevention

    TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex

    Get PDF
    •TNF deficiency alters the spatial organization of neurogenic zones.•TNF deficiency decreases WNT signaling-related proteins.•TNF deficiency alters neuronal and microglial numbers.•Long-term use of non-selective TNF inhibitors impairs learning and memory.•Long-term use of the soluble TNF selective inhibitor XPro1595 does not affect neurogenesis, learning and memory. Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF−/−) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF−/− mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF−/− mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment

    Lack of Chemokine Signaling through CXCR5 Causes Increased Mortality, Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload

    Get PDF
    RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/-)) displayed increased mortality during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR5(-/-) developed significant left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR5(-/-) compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/-) mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly

    Syndecan-4 Is Essential for Development of Concentric Myocardial Hypertrophy via Stretch-Induced Activation of the Calcineurin-NFAT Pathway

    Get PDF
    Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extracellular matrix proteins to the cytoskeleton, is an important signal transducer in cardiomyocytes during development of concentric myocardial hypertrophy following pressure overload. Echocardiographic, histochemical and cardiomyocyte size measurements showed that syndecan-4−/− mice did not develop concentric myocardial hypertrophy as found in wild-type mice, but rather left ventricular dilatation and dysfunction following pressure overload. Protein and gene expression analyses revealed diminished activation of the central, pro-hypertrophic calcineurin-nuclear factor of activated T-cell (NFAT) signaling pathway. Cardiomyocytes from syndecan-4−/−-NFAT-luciferase reporter mice subjected to cyclic mechanical stretch, a hypertrophic stimulus, showed minimal activation of NFAT (1.6-fold) compared to 5.8-fold increase in NFAT-luciferase control cardiomyocytes. Accordingly, overexpression of syndecan-4 or introducing a cell-permeable membrane-targeted syndecan-4 polypeptide (gain of function) activated NFATc4 in vitro. Pull-down experiments demonstrated a direct intracellular syndecan-4-calcineurin interaction. This interaction and activation of NFAT were increased by dephosphorylation of serine 179 (pS179) in syndecan-4. During pressure overload, phosphorylation of syndecan-4 was decreased, and association between syndecan-4, calcineurin and its co-activator calmodulin increased. Moreover, calcineurin dephosphorylated pS179, indicating that calcineurin regulates its own binding and activation. Finally, patients with hypertrophic myocardium due to aortic stenosis had increased syndecan-4 levels with decreased pS179 which was associated with increased NFAT activation. In conclusion, our data show that syndecan-4 is essential for compensatory hypertrophy in the pressure overloaded heart. Specifically, syndecan-4 regulates stretch-induced activation of the calcineurin-NFAT pathway in cardiomyocytes. Thus, our data suggest that manipulation of syndecan-4 may provide an option for therapeutic modulation of calcineurin-NFAT signaling
    • …
    corecore