37,748 research outputs found
Analytical methods for bacterial kinetics studies
Methods utilize mathematical equations and models and specialized computer techniques. Techniques apply to food production, complex chemicals production, and polluted water purification
Correcting for particle counting bias error in turbulent flow
An ideal seeding device is proposed generating particles that exactly follow the flow out are still a major source of error, i.e., with a particle counting bias wherein the probability of measuring velocity is a function of velocity. The error in the measured mean can be as much as 25%. Many schemes have been put forward to correct for this error, but there is not universal agreement as to the acceptability of any one method. In particular it is sometimes difficult to know if the assumptions required in the analysis are fulfilled by any particular flow measurement system. To check various correction mechanisms in an ideal way and to gain some insight into how to correct with the fewest initial assumptions, a computer simulation is constructed to simulate laser anemometer measurements in a turbulent flow. That simulator and the results of its use are discussed
Time-of-flight anemometer for hot section applications
The design, construction and testing of laser anemometer configurations for Hot Section velocity measurements is considered. Optimizing the laser anemometer system necessarily included the data processing algorithms used. It is felt that the requirements here are too demanding for standard laser anemometer systems
Statistical Mechanics of Vibration-Induced Compaction of Powders
We propose a theory which describes the density relaxation of loosely packed,
cohesionless granular material under mechanical tapping. Using the compactivity
concept we develope a formalism of statistical mechanics which allows us to
calculate the density of a powder as a function of time and compactivity. A
simple fluctuation-dissipation relation which relates compactivity to the
amplitude and frequency of a tapping is proposed. Experimental data of
E.R.Nowak et al. [{\it Powder Technology} 94, 79 (1997) ] show how density of
initially deposited in a fluffy state powder evolves under carefully controlled
tapping towards a random close packing (RCP) density. Ramping the vibration
amplitude repeatedly up and back down again reveals the existence of reversible
and irreversible branches in the response. In the framework of our approach the
reversible branch (along which the RCP density is obtained) corresponds to the
steady state solution of the Fokker-Planck equation whereas the irreversible
one is represented by a superposition of "excited states" eigenfunctions. These
two regimes of response are analyzed theoretically and a qualitative
explanation of the hysteresis curve is offered.Comment: 11 pages, 2 figures, Latex. Revised tex
InGaN epilayer characterization by microfocused x-ray reciprocal space mapping
We report the use of microfocused three-dimensional x-ray reciprocal space mapping to study InGaN epilayers with average InN content 20%-22%. Analysis of the full volume of reciprocal space, while probing samples on the microscale with a focused x-ray beam, allowed us to gain valuable information about the nanostructure of InN-rich InGaN epilayers. It is found that “seed” InGaN mosaic nanocrystallites are twisted with respect to the ensemble average and strain-free. The initial stages of InGaN-on-GaN epitaxial growth, therefore, conform to the Volmer-Weber growth mechanism with “seeds” nucleated on strain fields generated by the a-type edge dislocations
Recommended from our members
Response to Langmore and Spottiswoode: “Visual Trickery in Avian Brood Parasites”
Organismic and Evolutionary Biolog
Recommended from our members
Next-Generation QTL Mapping: Crowdsourcing SNPs, Without Pedigrees
For many molecular ecologists, the mantra and mission of the field of ecological genomics could be encapsulated by the phrase ‘to find the genes that matter’ (Mitchell-Olds 2001; Rockman 2012). This phrase of course refers to the early hope and current increasing success in the search for genes whose variation underlies phenotypic variation and fitness in natural populations. In the years since the modern incarnation of the field of ecological genomics, many would agree that the low-hanging fruit has, at least in principle, been plucked: we now have several elegant examples of genes whose variation influences key adaptive traits in natural populations, and these examples have revealed important insights into the architecture of adaptive variation (Hoekstra et al. 2006; Shapiro et al. 2009; Chan et al. 2010). But how well will these early examples, often involving single genes of large effect on discrete or near-discrete phenotypes, represent the dynamics of adaptive change for the totality of phenotypes in nature? Will traits exhibiting continuous rather than discrete variation in natural populations have as simple a genetic basis as these early examples suggest (Prasad et al. 2012; Rockman 2012)? Two papers in this issue (Robinson et al. 2013; Santure et al. 2013) not only suggest answers to these questions but also provide useful extensions of statistical approaches for ecological geneticists to study the genetics of continuous variation in nature. Together these papers, by the same research groups studying evolution in a natural population of Great Tits (Parus major), provide a glimpse of what we should expect as the field begins to dissect the genetic basis of what is arguably the most common type of variation in nature, and how genome-wide surveys of variation can be applied to natural populations without pedigrees.Organismic and Evolutionary Biolog
Obscenity in the Age of Direct Broadcast Satellite: A Final Burial for Stanley v. Georgia(?), A National Obscenity Standard, and Other Miscellany
- …
