16 research outputs found

    Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa

    Get PDF
    BACKGROUND: The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na(+)-K(+)-ATPase. METHODS: Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na(+)-K(+)-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. RESULTS: The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α(1)Na(+)-K(+)-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. CONCLUSIONS: These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs

    Hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption

    No full text
    Acid-base disturbances, such as metabolic or respiratory alkalosis, are relatively common in critically ill patients. We examined the effects of alkalosis (hypocapnic or metabolic alkalosis) on alveolar fluid reabsorption in the isolated and continuously perfused rat lung model. We found that alveolar fluid reabsorption after 1 hour was impaired by low levels of CO2 partial pressure (P-CO2; 10 and 20 mm Hg) independent of pH levels (7.7 or 7.4). In addition, P-CO2 higher than 30 mm Hg or metabolic alkalosis did not have an effect on this process. The hypocapnia-mediated decrease of alveolar fluid reabsorption was associated with decreased Na,K-ATPase activity and protein abundance at the basolateral membranes of distal air-spaces. The effect of low P-CO2 on alveolar fluid reabsorption was reversible because clearance normalized after correcting the P-CO2 back to normal levels. These data suggest that hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption. Conceivably, correction of hypocapnic alkalosis in critically ill patients may contribute to the normalization of lung ability to clear edema

    High CO2 levels impair alveolar epithelial function independently of pH

    No full text
    Background. In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2) is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes ∼40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. Principal Findings. We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCζ which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. Conclusions. Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange. © 2007 Briva et al
    corecore