111 research outputs found

    RQM description of the charge form factor of the pion and its asymptotic behavior

    Full text link
    The pion charge and scalar form factors, F1(Q2)F_1(Q^2) and F0(Q2)F_0(Q^2), are first calculated in different forms of relativistic quantum mechanics. This is done using the solution of a mass operator that contains both confinement and one-gluon-exchange interactions. Results of calculations, based on a one-body current, are compared to experiment for the first one. As it could be expected, those point-form, and instant and front-form ones in a parallel momentum configuration fail to reproduce experiment. The other results corresponding to a perpendicular momentum configuration (instant form in the Breit frame and front form with q+=0q^+=0) do much better. The comparison of charge and scalar form factors shows that the spin-1/2 nature of the constituents plays an important role. Taking into account that only the last set of results represents a reasonable basis for improving the description of the charge form factor, this one is then discussed with regard to the asymptotic QCD-power-law behavior Q2Q^{-2}. The contribution of two-body currents in achieving the right power law is considered while the scalar form factor, F0(Q2)F_0(Q^2), is shown to have the right power-law behavior in any case. The low-Q2Q^2 behavior of the charge form factor and the pion-decay constant are also discussed.}Comment: 30 pages, 10 figure

    Evaluation of the mean intensity of the P-odd mixing of nuclear compound states

    Full text link
    A temperature version of the shell-optical-model approach for describing the low-energy compound-to-compound transitions induced by external single-particle fields is given. The approach is applied to evaluate the mean intensity of the P-odd mixing of nuclear compound states. Unified description for the mixing and electromagnetic transitions allows one to evaluate the mean intensity without the use of free parameters. The valence-mechanism contribution to the mentioned intensity is also evaluated. Calculation results are compared with the data deduced from cross sections of relevant neutron-induced reactions.Comment: LaTeX, 10 page

    Parity nonconservation effects in the photodesintegration of polarized deuterons

    Get PDF
    P-odd correlations in the deuteron photodesintegration are considered. The π\pi-meson exchange is not operative in the case of unpolarized deuterons. For polarized deuterons a P-odd correlation due to the π\pi-meson exchange is about 3×1093 \times 10^{-9}. Short-distance P-odd contributions exceed essentially than the contribution of the π\pi-meson exchange.Comment: 12 pages, Latex, 3 figure

    Parity Violation in gamma proton Compton Scattering

    Full text link
    A measurement of parity-violating spin-dependent gamma proton Compton scattering will provide a theoretically clean determination of the parity-violating pion-nucleon coupling constant hπNN(1)h_{\pi NN}^{(1)}. We calculate the leading parity-violating amplitude arising from one-loop pion graphs in chiral perturbation theory. An asymmetry of ~5 10^{-8} is estimated for Compton scattering of 100 MeV photons.Comment: 6 pages, 1 figure, latex. Reference adde

    Anapole moment of an exotic nucleus

    Get PDF
    We demonstrate that there is no appreciable enhancement of the anapole moment of 11^{11}Be. The effect of small energy intervals is compensated for by a small overlap of the halo neutron wave function with core.Comment: 5 pages, LaTe

    Parity violation in deuteron photo-disintegration

    Full text link
    We analyze the energy dependence for two types of parity-non-conserving (PNC) asymmetries in the reaction γDnp\gamma D\to np in the near-threshold region. The first one is the asymmetry in reaction with circularly polarized photon beam and unpolarized deuteron target. The second one corresponds to those with an unpolarized photon beam and polarized target. We find that the two asymmetries have quite different energy dependence, and their shapes are sensitive to the PNC-meson exchange coupling constants. The predictions for the future possible experiments to provide definite constraints for the PNC-coupling constants are discussed.Comment: 22 pages, 12 figures. Submitted to Phys.Rev.C 10Oct.0

    A Microscopic T-Violating Optical Potential: Implications for Neutron-Transmission Experiments

    Full text link
    We derive a T-violating P-conserving optical potential for neutron-nucleus scattering, starting from a uniquely determined two-body ρ\rho-exchange interaction with the same symmetry. We then obtain limits on the T-violating ρ\rho-nucleon coupling gρ\overline{g}_{\rho} from neutron-transmission experiments in 165^{165}Ho. The limits may soon compete with those from measurements of atomic electric-dipole moments.Comment: 8 pages, 2 uuencoded figures in separate files (replaces version sent earlier in the day with figures attached), in RevTeX 3, submitted to PR

    Parity Violation in Proton-Proton Scattering

    Full text link
    Measurements of parity-violating longitudinal analyzing powers (normalized asymmetries) in polarized proton-proton scattering provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at 230 MeV and near 1.3 GeV. These experiments are intended to provide stringent constraints on the set of six effective weak meson-nucleon coupling constants, which characterize the weak interaction between hadrons in the energy domain where meson exchange models provide an appropriate description. The 221 MeV is unique in that it selects a single transition amplitude (3P2-1D2) and consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The TRIUMF 221 MeV proton-proton parity violation experiment is described in some detail. A preliminary result for the longitudinal analyzing power is Az = (1.1 +/-0.4 +/-0.4) x 10^-7. Further proton-proton parity violation experiments are commented on. The anomaly at 6 GeV/c requires that a new multi-GeV proton-proton parity violation experiment be performed.Comment: 13 Pages LaTeX, 5 PostScript figures, uses espcrc1.sty. Invited talk at QULEN97, International Conference on Quark Lepton Nuclear Physics -- Nonperturbative QCD Hadron Physics & Electroweak Nuclear Processes --, Osaka, Japan May 20--23, 199

    Anapole Moment and Other Constraints on the Strangeness Conserving Hadronic Weak Interaction

    Get PDF
    Standard analyses of low-energy NN and nuclear parity-violating observables have been based on a pi-, rho-, and omega-exchange model capable of describing all five independent s-p partial waves. Here a parallel analysis is performed for the one-body, exchange-current, and nuclear polarization contributions to the anapole moments of 133Cs and 205Tl. The resulting constraints are not consistent, though there remains some degree of uncertainty in the nuclear structure analysis of the atomic moments.Comment: Revtex, 10 pages, 1 figur

    A Consistent Study of the the Low Energy Baryon Spectrum and the Nucleon-Nucleon Interaction within the Chiral Quark Model

    Get PDF
    By solving the Schr\"{o}dinger equation for the three-quark system in the hyperspherical harmonic approach, we have studied the low energy part of the nucleon and Δ\Delta spectra using a quark-quark interaction which reproduces the nucleon-nucleon phenomenology. The quark-quark hamiltonian considered includes, besides the usual one-gluon exchange, pion and sigma exchanges generated by the chiral symmetry breaking. The baryonic spectrum obtained is reasonable and the resulting wave function gives consistency to the ansatz used in the two baryon system.Comment: Accepted for publication in Phys. Lett.
    corecore