324 research outputs found

    MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells

    Get PDF
    Mir-205 plays an important role in epithelial biogenesis and in mammary gland development but its role in cancer still remains controversial depending on the specific cellular context and target genes. We have previously reported that miR-205-5p is upregulated in breast cancer stem cells targeting ERBB pathway and leading to targeted therapy resistance. Here we show that miR-205-5p regulates tumorigenic properties of breast cancer cells, as well as epithelial to mesenchymal transition. Silencing this miRNA in breast cancer results in reduced tumor growth and metastatic spreading in mouse models. Moreover, we show that miR-205-5p knock-down can be obtained with the use of specific locked nucleic acids oligonucleotides in vivo suggesting a future potential use of this approach in therapy

    A NEW BRANCH of the ANIO NOVUS AQUEDUCT (ROME, ITALY) REVEALED by ARCHAEOLOGY and GEOPHYSICS

    Get PDF
    The area south-east of Rome is characterised by the presence of several roman aqueducts which brought water to the eternal city from the Apennine and Alban Hills springs. In the last 40 years, several pieces of evidence about these aqueducts were acquired during the realisation of archaeological test trenches before building activities. In 2019, a small branch of a subterranean aqueduct unknown to the Latin sources was unearthed in Via dei Sette Metri. Here we show that this aqueduct is a lateral branch of the Anio Novus, a major imperial aqueduct built between 38 and 52 CE. To achieve this result, we employed detailed photogrammetric restitution of the new aqueduct and an integrated geophysical survey focused in the area where the Anio Novus was supposed to pass. Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) methods were used to reconstruct aqueduct paths and their relative heights. Different light conditions were tested during the picture acquisition step to determine the best practice in the photogrammetric restitution. The results obtained in this study confirmed the great effectiveness of the integration between geophysical investigation methods and the modern archaeology approach in detecting buried ancient structures

    po 207 ferritin engineered nanoparticles as targeted drug delivery system for cancer treatment

    Get PDF
    Introduction Cancer remains still one of the major causes of death worldwide, therefore continuous improvements in tumor-fighting strategies are necessary. Targeting drugs directly to the tumour site, to overcome the systemic side effects, represents a great challenge. Nanoparticles have increasingly been used as drug delivery system showing intriguing therapeutic efficacies. Material and methods A genetically engineered nanocarrier based on human ferritin heavy chain (HFt) able to incorporate and deliver drugs was developed. These nanoparticles contain a short motif sequence (MP) cleavable by matrix metalloproteases between the HFt subunit and a masking sequence rich in proline (P), alanine (A) and serine (S): HFt-MP-PASE40. A topoisomerase I inhibitor was loaded into these nanocarriers (HFt-MP-PASE-Topo). Cell viability of different pancreatic cancer cell lines was evaluated in vitro. In vivo the therapeutic efficacy of HFt-MP-PASE-Topo was investigated on both a pancreatic cancer cell-line-derived xenograft and a patient-derived pancreatic cancer xenograft (PDX). Results and discussions In vitro studies showed a potent cytotoxic activity of HFt-MP-PASE-Topo with an IC50 that ranges between 0,005 ”M to 0,05 ”M. In vivo studies further demonstrated the therapeutic efficacy of HFt-MP-PASE-Topo in pancreatic cancer-bearing mice and in PDX model. In vivo treatments exhibited a robust decrease in tumour growth furthermore the animal overall survival significantly increased in HFt-MP-PASE-Topo treated mice. Conclusion Altogether, our results indicate that HFt-MP-PASE-Topo may constitute a promising tool in anticancer therapeutics

    p63 isoforms regulate metabolism of cancer stem cells

    Get PDF
    p63 is an important regulator of epithelial development expressed in different variants containing (TA) or lacking (\u394N) the N-terminal transactivation domain. The different isoforms regulate stem-cell renewal and differentiation as well as cell senescence. Several studies indicate that p63 isoforms also play a role in cancer development; however, very little is known about the role played by p63 in regulating the cancer stem phenotype. Here we investigate the cellular signals regulated by TAp63 and \u394Np63 in a model of epithelial cancer stem cells. To this end, we used colon cancer stem cells, overexpressing either TAp63 or \u394Np63 isoforms, to carry out a proteomic study by chemical-labeling approach coupled to network analysis. Our results indicate that p63 is implicated in a wide range of biological processes, including metabolism. This was further investigated by a targeted strategy at both protein and metabolite levels. The overall data show that TAp63 overexpressing cells are more glycolytic-active than \u394Np63 cells, indicating that the two isoforms may regulate the key steps of glycolysis in an opposite manner. The mass-spectrometry proteomics data of the study have been deposited to the ProteomeXchange Consortium (http://proteomecentral. proteomexchange.org) via the PRIDE partner repository with data set identifiers PXD000769 and PXD000768

    N6L pseudopeptide interferes with nucleophosmin protein-protein interactions and sensitizes leukemic cells to chemotherapy.

    Get PDF
    Abstract NPM1 is a multifunctional nucleolar protein implicated in several processes such as ribosome maturation and export, DNA damage response and apoptotic response to stress stimuli. The NPM1 gene is involved in human tumorigenesis and is found mutated in one third of acute myeloid leukemia patients, leading to the aberrant cytoplasmic localization of NPM1. Recent studies indicated that the N6L multivalent pseudopeptide, a synthetic ligand of cell–surface nucleolin, is also able to bind NPM1 with high affinity. N6L inhibits cell growth with different mechanisms and represents a good candidate as a novel anticancer drug for a number of malignancies of different histological origin. In this study we investigated whether N6L treatment could drive antitumor effect in acute myeloid leukemia cell lines. We found that N6L binds NPM1 at the N-terminal domain, co-localizes with cytoplasmic, mutated NPM1, and interferes with its protein-protein associations. N6L toxicity appears to be p53 dependent but interestingly, the leukemic cell line harbouring the mutated form of NPM1 is more resistant to treatment, suggesting that NPM1 cytoplasmic delocalization confers protection from p53 activation. Moreover, we show that N6L sensitizes AML cells to doxorubicin and cytarabine treatment. These studies suggest that N6L may be a promising option in combination therapies for acute myeloid leukemia treatment

    miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance

    Get PDF
    The ErbB tyrosine kinase receptor family has been shown to have an important role in tumorigenesis, and the expression of its receptor members is frequently deregulated in many types of solid tumors. Various drugs targeting these receptors have been approved for cancer treatment. Particularly, in breast cancer, anti-Her2/EGFR molecules represent the standard therapy for Her2-positive malignancies. However, in a number of cases, the tumor relapses or progresses thus suggesting that not all cancer cells have been targeted. One possibility is that a subset of cells capable of regenerating the tumor, such as cancer stem cells (CSCs), may not respond to these therapeutic agents. Accumulating evidences indicate that miR-205-5p is significantly downregulated in breast tumors compared with normal breast tissue and acts as a tumor suppressor directly targeting oncogenes such as Zeb1 and ErbB3. In this study, we report that miR-205-5p is highly expressed in BCSCs and represses directly ERBB2 and indirectly EGFR leading to resistance to targeted therapy. Furthermore, we show that miR-205-5p directly regulates the expression of p63 which is in turn involved in the EGFR expression suggesting a miR-205/p63/EGFR regulation

    p53FamTaG: a database resource of human p53, p63 and p73 direct target genes combining in silico prediction and microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The p53 gene family consists of the three genes p53, p63 and p73, which have polyhedral non-overlapping functions in pivotal cellular processes such as DNA synthesis and repair, growth arrest, apoptosis, genome stability, angiogenesis, development and differentiation. These genes encode sequence-specific nuclear transcription factors that recognise the same responsive element (RE) in their target genes. Their inactivation or aberrant expression may determine tumour progression or developmental disease. The discovery of several protein isoforms with antagonistic roles, which are produced by the expression of different promoters and alternative splicing, widened the complexity of the scenario of the transcriptional network of the p53 family members. Therefore, the identification of the genes transactivated by p53 family members is crucial to understand the specific role for each gene in cell cycle regulation. We have combined a genome-wide computational search of p53 family REs and microarray analysis to identify new direct target genes. The huge amount of biological data produced has generated a critical need for bioinformatic tools able to manage and integrate such data and facilitate their retrieval and analysis.</p> <p>Description</p> <p>We have developed the p53FamTaG database (p53 FAMily TArget Genes), a modular relational database, which contains p53 family direct target genes selected in the human genome searching for the presence of the REs and the expression profile of these target genes obtained by microarray experiments. p53FamTaG database also contains annotations of publicly available databases and links to other experimental data.</p> <p>The genome-wide computational search of the REs was performed using PatSearch, a pattern-matching program implemented in the DNAfan tool. These data were integrated with the microarray results we produced from the overexpression of different isoforms of p53, p63 and p73 stably transfected in isogenic cell lines, allowing the comparative study of the transcriptional activity of all the proteins in the same cellular background.</p> <p>p53FamTaG database is available free at <url>http://www2.ba.itb.cnr.it/p53FamTaG/</url></p> <p>Conclusion</p> <p>p53FamTaG represents a unique integrated resource of human direct p53 family target genes that is extensively annotated and provides the users with an efficient query/retrieval system which displays the results of our microarray experiments and allows the export of RE sequences. The database was developed for supporting and integrating high-throughput <it>in silico</it> and experimental analyses and represents an important reference source of knowledge for research groups involved in the field of oncogenesis, apoptosis and cell cycle regulation.</p

    E7 proteins from oncogenic human papillomavirus types transactivate p73: role in cervical intraepithelial neoplasia

    Get PDF
    In common with other E2F1 responsive genes such as p14ARF and B-myb, the promoter of p73 is shown to be positively regulated in cell lines and primary human keratinocytes by E7 proteins from oncogenic human papillomavirus (HPV) types 16, 18, 31 and 33, but not HPV 6. Mutational analysis revealed that transactivation of the p73 promoter by HPV 16E7 requires association with pRb. Expression of p73 in normal cervical epithelium is confined to the basal and supra-basal layers. In contrast, expression in neoplastic lesions is detected throughout the epithelium and increases with grade of neoplasia, being maximal in squamous cell cancers (SCC). Deregulation of expression of the N-terminal splice variant p73Δ2 was observed in a significant proportion of cancers, but not in normal epithelium. The frequent over-expression of p73Δ2, which has recognized transdominant properties, in malignant and pre-malignant lesions suggests a role in the oncogenic process in cervical epithelium
    • 

    corecore