25 research outputs found

    On the Proton Conductivity of Nafion-Faujasite Composite Membranes for Low Temperature Direct Methanol Fuel Cells.

    Get PDF
    Although zeolites are introduced to decrease methanol crossover of Nafion membranes for direct methanol fuel cells (DMFCs), little is known about the effect of their intrinsic properties and the interaction with the ionomer. In this work, Nafion-Faujasite composite membranes prepared by solution casting were characterized by extensive physicochemical and electrochemical techniques. Faujasite was found to undergo severe dealumination during the membrane activation, but its structure remained intact. The zeolite interacts with Nafion probably through hydrogen bonding between Si-OH and SO3H groups, which combined with the increase of the water uptake and the water mobility, and the addition of a less conductive phase (the zeolite) leads to an optimum proton conductivity between 0.98 and 2 wt% of zeolite. Hot pressing the membranes before their assembling with the electrodes enhanced the DMFC performance by reducing the methanol crossover and the serial resistance

    Prenatal ultrasound and postmortem histologic evaluation of tooth germs: an observational, transversal study

    Get PDF
    Introduction: Hypodontia is the most frequent developmental anomaly of the orofacial complex, and its detection in prenatal ultrasound may indicate the presence of congenital malformations, genetic syndromes and chromosomal abnormalities.To date, only a few studies have evaluated the histological relationship of human tooth germs identified by two-dimensional (2D) ultrasonography. In order to analyze whether two-dimensional ultrasonography of tooth germs may be successfully used for identifying genetic syndromes, prenatal ultrasound images of fetal tooth germs obtained from a Portuguese population sample were compared with histological images obtained from fetal autopsies.Methods: Observational, descriptive, transversal study. The study protocol followed the ethical principles outlined by the Helsinki Declaration and was approved by the Ethics Committee of the School of Dental Medicine, University of Porto (FMDUP, Porto, Portugal) and of the Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/EPE, Porto, Portugal) as well as by the CGC Genetics Embryofetal Pathology Laboratory. Eighty-five fetuses examined by prenatal ultrasound screening from May 2011 to August 2012 had an indication for autopsy following spontaneous fetal death or medical termination of pregnancy. Of the 85 fetuses, 37 (43.5%) were randomly selected for tooth germ evaluation by routine histopathological analysis. Fetuses who were up to 30 weeks of gestation, and whose histological pieces were not representative of all maxillary tooth germs was excluded. Twenty four fetus between the 13th and 30th weeks of gestation fulfilled the parameters to autopsy.Results: Twenty four fetuses were submitted to histological evaluation and were determined the exact number, morphology, and mineralization of their tooth germs. All tooth germs were identifiable with ultrasonography as early as the 13th week of gestation. Of the fetuses autopsied, 41.7% had hypodontia (29.1% maxillary hypodontia and 20.9% mandibular hypodontia).Conclusions: This results indicateinfo:eu-repo/semantics/publishedVersio

    Involvement of the cytoplasmic juxtamembrane region of matriptase in its exclusive localization to the basolateral membrane domain of Madin–Darby canine kidney epithelial cells

    No full text
    Matriptase is a type II transmembrane serine protease. This protease is strongly expressed in simple epithelial cells such as enterocytes and kidney tubular cells in which the plasma membranes are separated into apical and basolateral domains. Although matriptase was found previously to occur exclusively on the basolateral membrane of enterocytes, the underlying mechanism of localization is unclear. In the present study, a full-length rat matriptase and a chimera consisting of the cytoplasmic and transmembrane regions of the protease and green fluorescent protein (designated as 1–86GFP) were found to localize exclusively to the basolateral membrane domain when expressed in Madin–Darby canine kidney epithelial cells. Mutagenesis analysis of 1–86GFP revealed that the matriptase cytoplasmic juxtamembrane amino acid residues (Lys45, Val47, and Arg50) play a role in mediating the localization in the cells. This study provides the first evidence that matriptase carries information for its localization in simple epithelia
    corecore