54 research outputs found

    Anti-inflammatory effects of fatty acid amide hydrolase inhibition in monocytes/macrophages from alzheimer’s disease patients

    Get PDF
    Growing evidence shows that the immune system is critically involved in Alzheimer’s disease (AD) pathogenesis and progression. The modulation and targeting of peripheral immune mechanisms are thus promising therapeutic or preventive strategies for AD. Given the critical involvement of the endocannabinoid (eCB) system in modulating immune functions, we investigated the potential role of the main elements of such a system, namely type-1 and type-2 cannabinoid receptors (CB1 and CB2), and fatty acid amide hydrolase (FAAH), in distinct immune cell populations of the peripheral blood of AD patients. We found that, compared to healthy controls, CB1 and CB2 expression was significantly lower in the B-lymphocytes of AD patients. Moreover, we found that CB2 was significantly lower and FAAH was significantly higher in monocytes of the same subjects. In contrast, T-lymphocytes and NK cells did not show any variation in any of these proteins. Of note, monocytic CB2 and FAAH levels significantly correlated with clinical scores. Furthermore, the pharmacological inactivation of FAAH in monocytes and monocyte-derived macrophages obtained from AD patients was able to modulate their immune responses, by reducing production of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-12, and enhancing that of the anti-inflammatory cytokine IL-10. Furthermore, FAAH blockade skewed AD monocyte-derived macrophages towards a more anti-inflammatory and pro-resolving phenotype. Collectively, our findings highlight a central role of FAAH in regulating AD monocytes/macrophages that could be of value in developing novel monocyte-centered therapeutic approaches aimed at promoting a neuroprotective environment

    Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice

    Get PDF
    Docosahexaenoic acid (DHA) is a ω-3 fatty acid typically obtained from the diet or endogenously synthesized through the action of elongases (ELOVLs) and desaturases. DHA is a key central nervous system constituent and the precursor of several molecules that regulate the resolution of inflammation. In the present study, we questioned whether the impaired synthesis of DHA affected neural plasticity and inflammatory status in the adult brain. To address this question, we investigated neural and inflammatory markers from mice deficient for ELOVL2 (Elovl2−/−), the key enzyme in DHA synthesis. From our findings, Elovl2−/− mice showed an altered expression of markers involved in synaptic plasticity, learning, and memory formation such as Egr-1, Arc1, and BDNF specifically in the cerebral cortex, impacting behavioral functions only marginally. In parallel, we also found that DHA-deficient mice were characterized by an increased expression of pro-inflammatory molecules, namely TNF, IL-1β, iNOS, caspase-1 as well as the activation and morphologic changes of microglia in the absence of any brain injury or disease. Reintroducing DHA in the diet of Elovl2−/− mice reversed such alterations in brain plasticity and inflammation. Hence, impairment of systemic DHA synthesis can modify the brain inflammatory and neural plasticity status, supporting the view that DHA is an essential fatty acid with an important role in keeping inflammation within its physiologic boundary and in shaping neuronal functions in the central nervous system

    Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue

    Get PDF
    Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT

    Enterohaemorrhagic Escherichia coli and Shigella dysenteriae type 1-induced haemolytic uraemic syndrome

    Get PDF
    Haemolytic uraemic syndrome (HUS) can be classified according to the aetiology of the different disorders from which it is composed. The most prevalent form is that induced by shigatoxin producing Escherichia coli (STEC) and, in some tropical regions, by Shigella dysenteriae type 1. STEC cause a zoonosis, are widely distributed in nature, enter the food chain in different ways, and show regional differences. Not all STEC are human pathogens. Enterohaemorrhagic E. coli usually cause attachment and effacing lesions in the intestine. This is not essential, but production of a shigatoxin (Stx) is. Because Stx are encoded by a bacteriophage, this property is transferable to naïve strains. Laboratory methods have improved by identifying STEC either via the toxin or its bacteriophage. Shigella dysenteriae type 1 produces shigatoxin, identical to Stx-1, but also has entero-invasive properties that enterohaemorrhagic Escherichia coli (EHEC) do not. Shigella patients risk bacteremia and benefit from early antibiotic treatment, unlike those with EHEC

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: Clues for other neuroinflammatory diseases

    No full text
    Multiple sclerosis is the most common inflammatory demyelinating disease of the central nervous system, caused by an autoimmune response against myelin that eventually leads to progressive neurodegeneration and disability. Although the knowledge on its underlying neurobiological mechanisms has considerably improved, there is a still unmet need for new treatment options, especially for the progressive forms of the disease. Both preclinical and clinical data suggest that cannabinoids, derived from the Cannabis sativa plant, may be used to control symptoms such as spasticity and chronic pain, whereas only preclinical data indicate that these compounds and their endogenous counterparts, i.e. the endocannabinoids, may also exert neuroprotective effects and slow down disease progression. Here, we review the preclinical and clinical studies that could explain the therapeutic action of cannabinoid-based medicines, as well as the medical potential of modulating endocannabinoid signaling in multiple sclerosis, with a link to other neuroinflammatory disorders that share common hallmarks and pathogenetic features

    Endomorphin-1 inhibits the activation and the development of a hyporesponsive-like phenotype in lipopolysaccharide-stimulated THP-1 monocytes

    No full text
    Endomorphin-1 (EM-1) is an endogenous opioid peptide selectively binding to It opioid receptors (MORs). Besides its analgesic effects on the central nervous system (CNS), it has been recently reported that EM-1 can cross the blood-brain barrier (BBB) and diffuse into the blood, behaving as an analgesic/anti-inflammatory molecule on peripheral tissues, thus leading to the hypothesis that it could represent a soluble modulator of immune cell functions. Interestingly, nothing is known about its possible effects on monocytes, the main circulating cell-type involved in those systemic responses, such as fever and septic states, involving the release of high amounts of pyrogenic inflammatory factors. The aim of this work is to evaluate possible EM-1effects on lipopolisaccharide (LPS)-stimulated THP-1 monocytes in terms of the production of inflammatory mediators and the instauration of a hyporesponsive-like phenotype which is a main feature of systemic inflammatory responses, and on the development of peripheral monocytes to DC. Our data demonstrate for the first time that EM-1 is able to inhibit both LPS-stimulated monocyte activation, in terms of arachidonic acid, PGE(2), RO1 and NO2 production and instauration of a hyporesponsive phenotype without any macroscopic effect on DC development. These data support the hypothesis that EM-1 could be involved in modulating monocyte functions during systemic inflammatory reactions, also providing new evidence for its eventual clinical application in endotoxic states

    Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages

    No full text
    Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols
    • …
    corecore