2,506 research outputs found

    5-(carbamoylmethylene)-oxazolidin-2-ones as a promising class of heterocycles inducing apoptosis triggered by increased ROS levels and mitochondrial dysfunction in breast and cervical cancer

    Get PDF
    Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 and HeLa cells. The tested compounds displayed a wide range of cytotoxicity on these cancer cell lines, measured by MTT assay, exhibiting no cytotoxicity on non-tumorigenic MCF-10A cells. Among the nine tested derivatives, four displayed a good anticancer potential. Remarkably, OI compound showed IC50 values of 17.66 and 31.10 µM for MCF-7 and HeLa cancer cells, respectively. Furthermore, we assessed OI effect on the cell cycle by FACS analysis, highlighting a G1 phase arrest after 72 h, supported by a low expression level of Cyclin D1 protein. Moreover, mitochondrial membrane potential was reduced after OI treatment driven by high levels of ROS. These findings demonstrate that OI treatment can inhibit MCF-7 and HeLa cell proliferation and induce apoptosis by caspase-9 activation and cytochrome c release in the cytosol. Hence, 5-(carbamoylmethylene)-oxazolidin-2-ones have a promising anticancer activity, in particular, OI derivative could represent a good candidate for in vivo further studies and potential clinical use

    Dermoscopy of uncommon variants of dermatofibrosarcoma protuberans

    Get PDF
    Darier-Ferrand dermatofibrosarcoma protuberans (DFSP) is a locally aggressive fibrohistiocytic tumour with a low metastatic potential.(1) Because of its rarity, slow progression and lack of early clinical clues, the diagnosis of DFSP is often delayed. Classical DFSP clinically appeared like an indurated, irregularly-shaped plaques exhibiting flesh to reddish-brown colour. Some lesions also showed thin teleangectasia on the surface (Fig. 1, a). This article is protected by copyright. All rights reserved

    Blue biotechnology: oil bioremediation using hydrocarbon-degrading bacteria immobilized on biodegradable membranes

    Get PDF
    A novel bioremediation system to clean up oil contaminated water was developed combining hydrocarbon (HC) degrading bacteria immobilized and polylactic acid (PLA) or polycaprolactone (PCL) membranes prepared by electrospinning. The bioremediation efficiency was tested on crude oil using highly performant HC degrading bacterial strains isolated from marine and soil environments. The membrane morphology, the microbial adhesion and proliferation were evaluated using scanning electron microscopy (SEM). The SEM analysis highlighted that the fibers of the electrospun mats were in nanoscale with a similar diameter size distribution. The electrospun membranes exhibited high oil absorption capacity (q): approximately q = 40 g/g for PLA and q = 20 g/g for PCL. The bacterial strains were able to attach to the PLA and PCL membranes after 48h, reaching high proliferation and biofilm formation within the whole structure in 5 days. The biodegradation efficiency of the bacteria-membrane systems was tested by GC-FID analysis and compared with planktonic cells after 5 and 10 days incubation. The bacterial immobilization is a promoting factor for biodegradation and a new tool to be developed for bioremediation of aquatic systems

    Ionic Strength Responsive Sulfonated Polystyrene Opals

    Get PDF
    Stimuli-responsive photonic crystals (PCs) represent an intriguing class of smart materials very promising for sensing applications. Here, selective ionic strength responsive polymeric PCs are reported. They are easily fabricated by partial sulfonation of polystyrene opals, without using toxic or expensive monomers and etching steps. The color of the resulting hydrogel-like ordered structures can be continuously shifted over the entire visible range (405-760 nm) by changing the content of ions over an extremely wide range of concentration (from about 70 ÎĽM to 4 M). The optical response is completely independent from pH and temperature, and the initial color can be fully recovered by washing the sulfonated opals with pure water. These new smart photonic materials could find important applications as ionic strength sensors for environmental monitoring as well as for healthcare screening

    CFD-based scale-up of hydrodynamics and mixing in bubble columns

    Get PDF
    Unsteady and three-dimensional Eulerian–Eulerian CFD simulations of bubble column reactors under operating conditions of industrial interest are discussed in this work. The flow pattern in this equipment depends strongly on the interactions between the gas and liquid phases, mainly via the drag force. In this work, a correlation for the drag force coefficient is tested and improved to consider the so-called swarm effect that modifies the drag force at high gas volume fractions. The improved swarm factor proposed in this work is the adjustment of the swarm factor proposed by Simonnet et al. (2008). This new swarm factor is suitable for very high gas volume fractions without generating stability problems, which were encountered with the original formulation. It delivers an accurate prediction of gas volume fraction and liquid velocity in a wide range of tested operating conditions. Results are validated by comparison with experimental data on bubble column reactors at different scales and for several operating conditions. Hydrodynamics is well predicted for every operating condition at different scales. Several turbulence models are tested. Finally, the contribution of Bubble Induced Turbulence (BIT), as proposed by Alméras et al. (2015), on mixing is evaluated via an analysis of the mixing time

    A new design approach to the use of composite materials for heavy transport vehicles

    Get PDF
    In order to keep or to reach a high level of competitiveness and performance of a product, it is necessary to explore all the possible solutions that allow the best compromise between costs and project requirements. By this point of view the study of alternative designs and/or materials to use, is an important aspect that can identify a new concept or way of thinking about a product. This paper presents how to make use of composite materials in the field of heavy vehicles transportation. A new semitrailer in composite material has been designed, using a methodical redesign approach and an optimisation process. The main innovation in this project is, besides the use of the Glass Fibre Reinforced Plastics (GFRPs), also a new topology of the vehicle frame; the designed semitrailer, in fact. has a monocoque structur

    Neuromuscular Junction Dismantling in Amyotrophic Lateral Sclerosis

    Get PDF
    Neuromuscular junction assembly and plasticity during embryonic, postnatal, and adult life are tightly regulated by the continuous cross-talk among motor nerve endings, muscle fibers, and glial cells. Altered communications among these components is thought to be responsible for the physiological age-related changes at this synapse and possibly for its destruction in pathological states. Neuromuscular junction dismantling plays a crucial role in the onset of Amyotrophic Lateral Sclerosis (ALS). ALS is characterized by the degeneration and death of motor neurons leading to skeletal muscle denervation, atrophy and, most often, death of the patient within five years from diagnosis. ALS is a non-cell autonomous disease as, besides motor neuron degeneration, glial cells, and possibly muscle fibers, play a role in its onset and progression. Here, we will review the recent literature regarding the mechanisms leading to neuromuscular junction disassembly and muscle denervation focusing on the role of the three players of this peripheral tripartite synapse

    Blue biotechnology: enhancement of bioremediation using bacterial biofilms on biodegradable scaffolds

    Get PDF
    Petroleum hydrocarbons are still the most threatening environmental pollutants. A promising non invasive and low-cost technology for the treatment of contaminated sites is based on bioremediation by biodegrading microorganism endowed with catabolic ability towards oil and derivatives. New methods are needed to enhance and optimize natural biodegradation, such as the immobilization of hydrocarbons degraders in many types of supports. We developed a scaffold-bacteria bioremediation system to clean up oil contamination based on degradable 3D scaffolds. The polycaprolactone component is biodegradable, produced in the melt, i.e. at low cost and without the use of toxic solvents. The biofilm is made of highly performing HC-degrading bacteria such as the marine hydrocarbonoclastic bacteria (HCB) (1) or solid n-alkane degrading Actinobacteria (2, 3). The bacterial biofilm is observed within the whole structure of scaffold using scanning electron microscopy. The bioremediation efficiency of such systems was tested on crude oil by GC-FID analysis and compared whit planktonic cells. The biofilms formation was a promoting factor for biodegradation showing hydrocarbon removal up to 70% and 15% more in respect to the planktonic cells. Increasing availability of the contaminants and a better interaction between the hydrophobic substrate and the bacterial cells resulted in developing the degradation rate. Biofilm-mediated bioremediation is a new tool to be developed for bioremediation of acquatic system
    • …
    corecore