4,637 research outputs found

    Steps toward accurate large-area analyses of Genesis solar wind samples: evaluation of surface cleaning methods using total reflection X-ray fluorescence spectrometry

    Get PDF
    Total reflection X-ray fluorescence spectrometry (TXRF) was used to analyze residual surface contamination on Genesis solar wind samples and to evaluate different cleaning methods. To gauge the suitability of a cleaning method, two samples were analyzed following cleaning by lab-based TXRF. The analysis comprised an overview and a crude manual mapping of the samples by orienting them with respect to the incident X-ray beam in such a way that different regions were covered. The results show that cleaning with concentrated hydrochloric acid and a combination of hydrochloric acid and hydrofluoric acid decreased persistent inorganic contaminants substantially on one sample. The application of CO2 snow for surface cleaning tested on the other sample appears to be effective in removing one persistent Genesis contaminant, namely germanium. Unfortunately, the TXRF analysis results of the second sample were impacted by relatively high background contamination. This was mostly due to the relatively small sample size and that the solar wind collector was already mounted with silver glue for resonance ion mass spectrometry (RIMS) on an aluminium stub. Further studies are planned to eliminate this problem. In an effort to identify the location of very persistent contaminants, selected samples were also subjected to environmental scanning electron microscopy. The results showed excellent agreement with TXRF analysis

    The Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls

    Full text link
    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical pre-factor of order unity, this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical pre-factor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.Comment: 7 pages, 3 figure

    Stochastic Gene Expression in a Lentiviral Positive Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity

    Get PDF
    Stochastic gene expression has been implicated in a variety of cellular processes, including cell differentiation and disease. In this issue of Cell, Weinberger et al. (2005) take an integrated computational-experimental approach to study the Tat transactivation feedback loop in HIV-1 and show that fluctuations in a key regulator, Tat, can result in a phenotypic bifurcation. This phenomenon is observed in an isogenic population where individual cells display two distinct expression states corresponding to latent and productive infection by HIV-1. These findings demonstrate the importance of stochastic gene expression in molecular "decision-making."Comment: Supplemental data available as q-bio.MN/060800

    Simplest cosmological model with the scalar field II. Influence of cosmological constant

    Full text link
    Continuing the investigation of the simplest cosmological model with the massive real scalar non-interacting inflaton field minimally coupled to gravity we study an influence of the cosmological constant on the behaviour of trajectories in closed minisuperspace Friedmann-Robertson-Walker model. The transition from chaotic to regular behaviour for large values of cosmological constant is discussed. Combining numerical calculations with qualitative analysis both in configuration and phase space we present a convenient classification of trajectories.Comment: 12 pages with 2 gif figures and 2 eps figures, mprocl.sty, To appear in International Journal of Modern Physics

    Revisiting critical literacy in the digital age

    Get PDF
    In an age of environmental crisis, financial instability, widespread migration, and political extremism, the case for critical literacy is pressing. Navigating criticality in the digital age, however, is challenging, not least because digital media, digital devices, and digital architectures are implicated in broader social, cultural, commercial, and political activity. Critical literacy in this context needs to do more than focus on the significance of texts within networks of humans. The authors developed a model designed to support a relational approach to critical literacy, drawing on a sociomaterial perspective to consider how broader social‐material networks help generate meanings that may amplify, undermine, or contradict the activities of individuals and groups. The authors end with questions that provide a starting point for broadening the scope of critical literacy in education to reflect on relationships among people, texts, and materials across time and spaces

    Precise location of Sagittarius X ray sources with a rocket-borne rotating modulation collimator

    Get PDF
    Precise location of Sagittarius X ray sources with rocket-borne rotating modulation collimato

    Conventional character of the BCS-BEC cross-over in ultra-cold gases of 40K

    Full text link
    We use the standard fermionic and boson-fermion Hamiltonians to study the BCS-BEC cross-over near the 202 G resonance in a two-component mixture of fermionic 40K atoms employed in the experiment of C.A. Regal et al., Phys. Rev. Lett. 92, 040403 (2004). Our mean-field analysis of many-body equilibrium quantities shows virtually no differences between the predictions of the two approaches, provided they are both implemented in a manner that properly includes the effect of the highest excited bound state of the background scattering potential, rather than just the magnetic-field dependence of the scattering length. Consequently, we rule out the macroscopic occupation of the molecular field as a mechanism behind the fermionic pair condensation and show that the BCS-BEC cross-over in ultra-cold 40K gases can be analysed and understood on the same basis as in the conventional systems of solid state physics.Comment: 16 pages, 10 eps figures; final versio

    Theory of Bose-Einstein condensation for trapped atoms

    Full text link
    We outline the general features of the conventional mean-field theory for the description of Bose-Einstein condensates at near zero temperatures. This approach, based on a phenomenological model, appears to give excellent agreement with experimental data. We argue, however, that such an approach is not rigorous and cannot contain the full effect of collisional dynamics due to the presence of the mean-field. We thus discuss an alternative microscopic approach and explain, within our new formalism, the physical origin of these effects. Furthermore, we discuss the potential formulation of a consistent finite-temperature mean-field theory, which we claim necessiates an analysis beyond the conventional treatment.Comment: 12 pages. To appear in Phil. Trans. R. Soc. Lond. A 355 (1997
    corecore