10,964 research outputs found

    Searching For Dark Matter Subhalos In the Fermi-LAT Second Source Catalog

    Full text link
    The dark matter halo of the Milky Way is expected to contain an abundance of smaller subhalos. These subhalos can be dense and produce potentially observable fluxes of gamma rays. In this paper, we search for dark matter subhalo candidates among the sources in the Fermi-LAT Second Source Catalog which are not currently identified or associated with counterparts at other wavelengths. Of the nine high-significance, high-latitude (|b|>60 degrees), non-variable, unidentified sources contained in this catalog, only one or two are compatible with the spectrum of a dark matter particle heavier than approximately 50-100 GeV. The majority of these nine sources, however, feature a spectrum that is compatible with that predicted from a lighter (~5-40 GeV) dark matter particle. This population is consistent with the number of observable subhalos predicted for a dark matter candidate in this mass range and with an annihilation cross section of a simple thermal relic (sigma v~3x10^{-26} cm^3/s). Observations in the direction of these sources at other wavelengths will be necessary to either reveal their astrophysical nature (as blazars or other active galactic nuclei, for example), or to further support the possibility that they are dark matter subhalos by failing to detect any non-gamma ray counterpart.Comment: 8 pages, 4 figure

    Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence

    Get PDF
    Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials

    Empirical relations for cavitation and liquid impingement erosion processes

    Get PDF
    A unified power-law relationship between average erosion rate and cumulative erosion is presented. Extensive data analyses from venturi, magnetostriction (stationary and oscillating specimens), liquid drop, and jet impact devices appear to conform to this relation. A normalization technique using cavitation and liquid impingement erosion data is also presented to facilitate prediction. Attempts are made to understand the relationship between the coefficients in the power-law relationships and the material properties

    Solid spherical glass particle impingement studies of plastic materials

    Get PDF
    Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening

    A gamma-ray burst remnant in our Galaxy: HESS J1303-631

    Full text link
    We present the results of our investigation of the multiwavelength data on HESS J1303-631, an unidentified TeV source serendipitously discovered in the Galactic plane by the HESS collaboration. These results strongly suggest the identification of this particular source as the remnant of a Gamma-Ray Burst (GRB) that happened some few tens of thousands years ago in our Galaxy at a distance on the order of 10 kpc from us. We show, through detailed calculations of particle diffusion, interaction and radiation processes of relativistic particles in the interstellar medium, that it is possible for a GRB remnant (GRBR) to be a strong TeV emitter with no observable synchrotron emission. We predict spectral and spatial signatures that would unambiguously distinguish GRBRs from ordinary supernova remnants, including: (1) large energy budgets inferred from their TeV emission, but at the same time, (2) suppressed fluxes in the radio through GeV wavebands; (3) extended center-filled emission with an energy-dependent spatial profile; and (4) a possible elongation in the direction of the past pair of GRB jets. While GRBRs can best be detected by ground-based gamma-ray detectors, the future GLAST mission will play a crucial role in confirming the predicted low level of GeV emission.Comment: Replaced by the version accepted in ApJ Letters (to appear in April/May 2006); 4 pages, 3 figure

    Size scale effect in cavitation erosion

    Get PDF
    An overview and data analyses pertaining to cavitation erosion size scale effects are presented. The exponents n in the power law relationship are found to vary from 1.7 to 4.9 for venturi and rotating disk devices supporting the values reported in the literature. Suggestions for future studies were made to arrive at further true scale effects

    Morphology of an aluminum alloy eroded by a jet of angular particles impinging at normal incidence

    Get PDF
    The erosion of an aluminum alloy impinged by crushed glass particles at normal incidence was studied. The erosion patterns were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy, and surface profilometer measurements. From the analysis of specimens tested at various driving gas pressures and time intervals, four distinct erosion regions were identified. A study of pit morphology and its relationship to cumulative erosion was made. Cutting wear is believed to be the predominant material removal mechanism; some evidence of deformation wear was found during the incubation period

    A study of the nature of solid particle impact and shape on the erosion morphology of ductile metals

    Get PDF
    Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possibility of complex chemical and/or mechanical interactions between erodants and target materials

    A New Analysis Method for Reconstructing the Arrival Direction of TeV Gamma-rays Using a Single Imaging Atmospheric Cherenkov Telescope

    Get PDF
    We present a method of atmospheric Cherenkov imaging which reconstructs the unique arrival direction of TeV gamma rays using a single telescope. The method is derived empirically and utilizes several features of gamma-ray induced air showers which determine, to a precision of 0.12 degrees, the arrival direction of photons, on an event-by-event basis. Data from the Whipple Observatory's 10 m gamma-ray telescope is utilized to test selection methods based on source location. The results compare these selection methods with traditional techniques and three different camera fields of view. The method will be discussed in the context of a search for a gamma-ray signal from a point source located anywhere within the field of view and from regions of extended emission.Comment: 24 pages, 16 figures, accepted for publication in Astroparticle Physics May 11, 200
    corecore