67 research outputs found

    Decreased Type I Interferon Production by Plasmacytoid Dendritic Cells Contributes to Severe Dengue

    Get PDF
    The clinical presentation of dengue virus (DENV) infection is variable. Severe complications mainly result from exacerbated immune responses. Type I interferons (IFN-I) are important in antiviral responses and form a crucial link between innate and adaptive immunity. Their contribution to host defense during DENV infection remains under-studied, as direct quantification of IFN-I is challenging. We combined ultra-sensitive single-molecule array (Simoa) digital ELISA with IFN-I gene expression to elucidate the role of IFN-I in a well-characterized cohort of hospitalized Cambodian children undergoing acute DENV infection. Higher concentrations of type I IFN proteins were observed in blood of DENV patients, compared to healthy donors, and correlated with viral load. Stratifying patients for disease severity, we found a decreased expression of IFN-I in patients with a more severe clinical outcome, such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). This was seen in parallel to a correlation between low IFNα protein concentrations and decreased platelet counts. Type I IFNs concentrations were correlated to frequencies of plasmacytoid DCs, not DENV-infected myloid DCs and correlated inversely with neutralizing anti-DENV antibody titers. Hence, type I IFN produced in the acute phase of infection is associated with less severe outcome of dengue disease

    Essais d'hyperoxygenation des mouts. Influences sur la qualite des vins d'Alsace

    No full text
    INRA de Colmar, laboratoire d'oenologi

    Antioxidant activity of olive oil mill wastewater obtained from different thermal treatments

    Get PDF
    In food industry, Olive Oil Mill Wastewater (OOMWW) is considered a by-product because of the presence of biostatic compounds with a high polluting rate, in particular phenols. Moreover, during olive oil processing, a large amount of this by-product constitutes an ecological and economical problem for the producers. To reevaluate this by-product, the reuse of this wastewater to obtain useful compounds appears to be very important. In order to purify the wastewater, the development of operations that modify its organic content seems necessary for obtaining of eventual fertilizing agents and/or to recover substances with a high added value such as phenolic compounds, which are currently recognized scientifically as molecules with a high antioxidant activity. A chromatographic analysis of these compounds was conducted to characterize different concentrations of wastewater and the reducing power of the extracts was measured. The thermal treatment of olive oil mill wastewater in a rotary evaporator and in an oven involved an increase in radical scavenging efficiency. These results could be correlated with the possibility of recovering and reusing this type of waste for its antioxidant properties.<br><br>En la industria alimentaria, el alpechín se considera un subproducto debido a la presencia de compuestos bioestáticos, con una alta tasa de contaminación, particularmente los fenoles. Además, durante el procesado de la aceituna, la generación de una gran cantidad de este subproducto supone un problema ecológico y económico para los productores. Es importante la reutilización de este agua de desecho para obtener compuestos útiles. Para purificar el agua de desecho es necesario el desarrollo de operaciones que modifiquen su contenido orgánico, para poder obtener agentes fertilizantes y/o recuperar sustancias con un alto valor añadido como los compuestos fenólicos, que actualmente están reconocidos científicamente como moléculas con una elevada actividad antioxidante. Se realizó un análisis cromatográfico de dichos compuestos para caracterizar las diferentes concentraciones en el alpechín, y posteriormente se determinó el poder reductor de los extractos. El tratamiento térmico del alpechín en rotavapor y en estufa incrementó la eficiencia en la captura de radicales. Estos resultados pueden correlacionarse con la posibilidad de recuperar y reutilizar este tipo de desecho debido a sus propiedades antioxidantes

    Test of protected silver coating on aluminum samples of ARIEL main telescope mirror substrate material

    No full text
    Ariel (Atmospheric Remote-Sensing Infrared Exoplanet Large Survey) has been adopted as the M4 mission for ESA \u201cCosmic Vision\u201d program. Launch is scheduled for 2029. ARIEL will study exoplanet atmospheres through transit spectroscopy with a 1 m class telescope optimized in the waveband between 1.95 and 7.8 \u3bcm and operating in cryogenic conditions in the temperature range 40-50 K. Aluminum alloy 6061, in the T651 temper, was chosen as baseline material for telescope mirror substrates and supporting structures, following a trade-off study. To improve mirrors reflectivity within the operating waveband and to protect the aluminum surface from oxidation, a protected silver coating with space heritage was selected and underwent a qualification campaign during Phase B1 of the mission, with the goal of demonstrating a sufficient level of technology maturity. The qualification campaign consisted of two phases: a first set of durability and environmental tests conducted on a first batch of coated aluminum samples, followed by a set of verification tests performed on a second batch of samples coated alongside a full-size demonstrator of Ariel telescope primary mirror. This study presents the results of the verification tests, consisting of environmental (humidity and temperature cycling) tests and chemical/mechanical (abrasion, adhesion, cleaning) tests performed on the samples, and abrasion tests performed on the demonstrator, by means of visual inspections and reflectivity measurements
    corecore