46 research outputs found

    High Cooperativity of the SV40 Major Capsid Protein VP1 in Virus Assembly

    Get PDF
    SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of ∼6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility

    Interrelationship between muscle fitness in childhood and bone mineral density in adulthood: mediation analysis of muscle fitness in adulthood

    Get PDF
    Abstract Background This study was aimed to examine the relationship between muscular fitness indicators in childhood and areal bone mineral density (aBMD) in adulthood and to verify whether the relationship is mediated by performance on muscular fitness indicators in adulthood. Methods A sample of 138 healthy adults (69 males; 22.3 years) were followed after a previous assessment at the age of 7–10 years. Stature, body mass and muscular fitness indicators (handgrip strength, standing long jump and sit-ups tests) were assessed in childhood and adulthood. Additionally, total body, upper limbs, lower limbs, right femoral neck and lumbar spine aBMD was assessed in adulthood using dual X-ray absorptiometry. Analysis included descriptive statistics; t-test or Mann-Whitney U-test for comparison between males and females, multiple linear regression for the prediction aBMD from muscular fitness indicators in childhood, mediation analysis of the respective muscular fitness indicators in adulthood and the relationship between muscular fitness indicators in childhood and aBMD. Results Males were stronger compared to females regarding muscular fitness indicators in childhood and adulthood, and presented higher mean values for aBMD in adulthood, except for lumbar spine (p < 0.05). Regression analysis revealed that some muscular fitness indicators in childhood showed significant positive relationship with bone health indicators in adulthood, such as: handgrip strength and total body aBMD (β = 0.005; R2 = 0.35; p = 0.040) and upper limbs aBMD (β = 0.005; R2 = 0.55; p = 0.019); and sit-ups test was a significant predictors of lumbar spine BMD (β = 0.003; R2 = 0.06; p = 0.039). Mediation analysis pointed out the following: adulthood handgrip strength mediated relationships between childhood handgrip strength and total aBMD (indirect effect (IE) = 0.0025; 95%CI = 0.0005–0.0048), and upper limbs aBMD (IE = 0.0040; 95%CI = 0.0017–0.0069). Conclusions Muscular fitness indicators in childhood showed significant relationship with bone health indicators in adulthood and the sit-ups test in childhood had direct effect on lumbar spine aBMD in adulthood. Adulthood handgrip strength mediated the relationship between childhood handgrip strength and total body and upper limb aBMD, pointing out that muscular fitness in childhood may be a aBMD determinant in adulthood, especially when higher muscle fitness performance is maintained in adulthood
    corecore