669 research outputs found

    Problems with interpretation of 10^{10}He ground state

    Get PDF
    The continuum of 10^{10}He nucleus is studied theoretically in a three-body 8^{8}He+nn+nn model basing on the recent information concerning 9^9He spectrum [Golovkov, \textit{et al.}, Phys. Rev. C \textbf{76}, 021605(R) (2007)]. The 10^{10}He ground state (g.s.) candidate with structure [p1/2]2[p_{1/2}]^2 for new g.s. energy of 9^9He is predicted to be at about 2.0−2.32.0-2.3 MeV. The peak in the cross section associated with this state may be shifted to a lower energy (e.g. ∌1.2\sim 1.2 MeV) when 10^{10}He is populated in reactions with 11^{11}Li due to peculiar reaction mechanism. Formation of the low-energy (E<250E< 250 keV) ``alternative'' ground state with structure [s1/2]2[s_{1/2}]^2 is highly probable in 10^{10}He in the case of considerable attraction (e.g. a<−5a<-5 fm) in the s-wave 9^9He channel, which properties are still quite uncertain. This result either questions the existing experimental low-energy spectrum of 10^{10}He or place a limit on the scattering length in 9^9He channel, which contradicts existing data.Comment: 14 pages, 13 figures, 1 tabl

    Hartman effect and spin precession in graphene

    Full text link
    Spin precession has been used to measure the transmission time \tau over a distance L in a graphene sheet. Since conduction electrons in graphene have an energy-independent velocity v, one would expect \tau > L/v. Here we calculate that \tau < L/v at the Dirac point (= charge neutrality point) in a clean graphene sheet, and we interpret this result as a manifestation of the Hartman effect (apparent superluminality) known from optics.Comment: 6 pages, 4 figures; v2: added a section on the case of perpendicularly aligned magnetizations; v3: added a figur

    Compact and Loosely Bound Structures in Light Nuclei

    Get PDF
    A role of different components in the wave function of the weakly bound light nuclei states was studied within the framework of the cluster model, taking into account of orbitals "polarization". It was shown that a limited number of structures associated with the different modes of nucleon motion can be of great importance for such systems. Examples of simple and quite flexible trial wave functions are given for the nuclei 8^8Be, 6^6He. Expressions for the microscopic wave functions of these nuclei were found and used for the calculation of basic nuclear characteristics, using well known central-exchange nucleon-nucleon potentials.Comment: 19 pages, 3 ps figure

    Quantum Abacus for counting and factorizing numbers

    Full text link
    We generalize the binary quantum counting algorithm of Lesovik, Suslov, and Blatter [Phys. Rev. A 82, 012316 (2010)] to higher counting bases. The algorithm makes use of qubits, qutrits, and qudits to count numbers in a base 2, base 3, or base d representation. In operating the algorithm, the number n < N = d^K is read into a K-qudit register through its interaction with a stream of n particles passing in a nearby wire; this step corresponds to a quantum Fourier transformation from the Hilbert space of particles to the Hilbert space of qudit states. An inverse quantum Fourier transformation provides the number n in the base d representation; the inverse transformation is fully quantum at the level of individual qudits, while a simpler semi-classical version can be used on the level of qudit registers. Combining registers of qubits, qutrits, and qudits, where d is a prime number, with a simpler single-shot measurement allows to find the powers of 2, 3, and other primes d in the number n. We show, that the counting task naturally leads to the shift operation and an algorithm based on the quantum Fourier transformation. We discuss possible implementations of the algorithm using quantum spin-d systems, d-well systems, and their emulation with spin-1/2 or double-well systems. We establish the analogy between our counting algorithm and the phase estimation algorithm and make use of the latter's performance analysis in stabilizing our scheme. Applications embrace a quantum metrological scheme to measure a voltage (analog to digital converter) and a simple procedure to entangle multi-particle states.Comment: 23 pages, 15 figure

    New Perturbation Theory for Nonstationary Anharmonic Oscillator

    Full text link
    The new perturbation theory for the problem of nonstationary anharmonic oscillator with polynomial nonstationary perturbation is proposed. As a zero order approximation the exact wave function of harmonic oscillator with variable frequency in external field is used. Based on some intrinsic properties of unperturbed wave function the variational-iterational method is proposed, that make it possible to correct both the amplitude and the phase of wave function. As an application the first order correction are proposed both for wave function and S-matrix elements for asymmetric perturbation potential of type V(x,τ)=α(τ)x3+ÎČ(τ)x4.V(x,\tau)=\alpha (\tau)x^3+\beta (\tau)x^4. The transition amplitude ''ground state - ground state'' W00(λ;ρ)W_{00}(\lambda ;\rho) is analyzed in detail depending on perturbation parameter λ\lambda (including strong coupling region % \lambda ∌1\sim 1) and one-dimensional refraction coefficient ρ\rho .Comment: LaTeX, 13 page

    Peculiar properties of the cluster-cluster interaction induced by the Pauli exclusion principle

    Full text link
    Role of the Pauli principle in the formation of both the discrete spectrum and multi-channel states of the binary nuclear systems composed of clusters is studied in the Algebraic Version of the resonating-group method. Solutions of the Hill-Wheeler equations in the discrete representation of a complete basis of the Pauli-allowed states are discussed for 4He+n, 3H+3H, and 4He+4He binary systems. An exact treatment of the antisymmetrization effects are shown to result in either an effective repulsion of the clusters, or their effective attraction. It also yields a change in the intensity of the centrifugal potential. Both factors significantly affect the scattering phase behavior. Special attention is paid to the multi-channel cluster structure 6He+6He as well as to the difficulties arising in the case when the two clustering configurations, 6He+6He and 4He+8He, are taken into account simultaneously. In the latter case the Pauli principle, even in the absence of a potential energy of the cluster-cluster interaction, leads to the inelastic processes and secures an existence of both the bound state and resonance in the 12Be compound nucleus.Comment: 17 pages, 14 figures, 1 table; submitted to Phys.Rev.C Keywords: light neutron-rich nuclei, cluster model

    Traversal time for electron tunneling in water

    Full text link
    The traversal time for tunneling is a measure of the time during which the transmitted particle can be affected by interactions localized in the barrier. The Buttiker-Landauer approach, which estimates this time by imposing an internal clock on the system, has been applied so far for relatively simple 1-dimensional models. Here we apply this approach to estimate the traversal time for electron tunneling through a realistic 3-dimensional model of a water layer. Observed structure in the energy dependence of times computed reflects the existence of transient tunneling resonances associated with instantaneous water structures.Comment: 9 pages, 3 figures. Submitted to the Journal of Chemical Physic

    Quantum divisibility test and its application in mesoscopic physics

    Full text link
    We present a quantum algorithm to transform the cardinality of a set of charged particles flowing along a quantum wire into a binary number. The setup performing this task (for at most N particles) involves log_2 N quantum bits serving as counters and a sequential read out. Applications include a divisibility check to experimentally test the size of a finite train of particles in a quantum wire with a one-shot measurement and a scheme allowing to entangle multi-particle wave functions and generating Bell states, Greenberger-Horne-Zeilinger states, or Dicke states in a Mach-Zehnder interferometer.Comment: 9 pages, 5 figure

    Passive sampling of wastewater as a tool for the long-term monitoring of community exposure: Illicit and prescription drug trends as a proof of concept

    Get PDF
    Embargo until 20 May 2019.A passive sampling device, the Polar Organic Chemical Integrative Sampler (POCIS), was calibrated in-situ over a 4-week period in Oslo (Norway) for 10 illicit drugs and pharmaceuticals with the goal of developing an approach for monitoring long-term wastewater drug loads. The calibrations were performed in triplicate using three different overlapping calibration sets under changing environmental conditions that allowed the uncertainty of the sampling rates to be evaluated. All 10 compounds exhibited linear uptake kinetics and provided sampling rates of between 0.023 and 0.192 L d−1. POCIS were deployed for consecutive 2-week periods during 2012 and 2013 and the calculated time-weighted average (TWA) concentrations used to define different drug use trends. The relative uncertainty related to the POCIS data was approximately 40% and, except for citalopram, 85% of all the long-term measurements of pharmaceuticals were within the confidence interval levels calculated to evaluate the effects of changing environmental conditions on the TWA estimations. POCIS was demonstrated to be sufficiently robust to provide reliable annual drug use estimates with a smaller number of samplers (n = 24) than recommended for active sampling (n = 56) within an acceptable level of sample size related uncertainty < 10%. POCIS is demonstrated to be a valuable and reliable tool for the long-term monitoring of certain drugs and pharmaceuticals within a defined population.acceptedVersio

    Evolution of a Bose-condensed gas under variations of the confining potential

    Get PDF
    We discuss the dynamic properties of a trapped Bose-condensed gas under variations of the confining field and find analytical scaling solutions for the evolving coherent state (condensate). We further discuss the characteristic features and the depletion of this coherent state.Comment: 4 pages, no postscript figure
    • 

    corecore