9,827 research outputs found

    Star-Triangle Relation for a Three Dimensional Model

    Full text link
    The solvable sl(n)sl(n)-chiral Potts model can be interpreted as a three-dimensional lattice model with local interactions. To within a minor modification of the boundary conditions it is an Ising type model on the body centered cubic lattice with two- and three-spin interactions. The corresponding local Boltzmann weights obey a number of simple relations, including a restricted star-triangle relation, which is a modified version of the well-known star-triangle relation appearing in two-dimensional models. We show that these relations lead to remarkable symmetry properties of the Boltzmann weight function of an elementary cube of the lattice, related to spatial symmetry group of the cubic lattice. These symmetry properties allow one to prove the commutativity of the row-to-row transfer matrices, bypassing the tetrahedron relation. The partition function per site for the infinite lattice is calculated exactly.Comment: 20 pages, plain TeX, 3 figures, SMS-079-92/MRR-020-92. (corrupted figures replaced

    Bethe Ansatz Equations for the Broken ZNZ_{N}-Symmetric Model

    Get PDF
    We obtain the Bethe Ansatz equations for the broken ZN{\bf Z}_{N}-symmetric model by constructing a functional relation of the transfer matrix of LL-operators. This model is an elliptic off-critical extension of the Fateev-Zamolodchikov model. We calculate the free energy of this model on the basis of the string hypothesis.Comment: 43 pages, latex, 11 figure

    A possible combinatorial point for XYZ-spin chain

    Full text link
    We formulate and discuss a number of conjectures on the ground state vectors of the XYZ-spin chains of odd length with periodic boundary conditions and a special choice of the Hamiltonian parameters. In particular, arguments for the validity of a sum rule for the components, which describes in a sense the degree of antiferromagneticity of the chain, are given.Comment: AMSLaTeX, 15 page

    The order parameter of the chiral Potts model

    Full text link
    An outstanding problem in statistical mechanics is the order parameter of the chiral Potts model. An elegant conjecture for this was made in 1983. It has since been successfully tested against series expansions, but as far as the author is aware there is as yet no proof of the conjecture. Here we show that if one makes a certain analyticity assumption similar to that used to derive the free energy, then one can indeed verify the conjecture. The method is based on the ``broken rapidity line'' approach pioneered by Jimbo, Miwa and Nakayashiki.Comment: 29 pages, 7 figures. Citations made more explicit and some typos correcte

    Eigenvectors of Baxter-Bazhanov-Stroganov \tau^{(2)}(t_q) model with fixed-spin boundary conditions

    Full text link
    The aim of this contribution is to give the explicit formulas for the eigenvectors of the transfer-matrix of Baxter-Bazhanov-Stroganov (BBS) model (N-state spin model) with fixed-spin boundary conditions. These formulas are obtained by a limiting procedure from the formulas for the eigenvectors of periodic BBS model. The latter formulas were derived in the framework of the Sklyanin's method of separation of variables. In the case of fixed-spin boundaries the corresponding T-Q Baxter equations for the functions of separated variables are solved explicitly. As a particular case we obtain the eigenvectors of the Hamiltonian of Ising-like Z_N quantum chain model.Comment: 14 pages, paper submitted to Proceedings of the International Workshop "Classical and Quantum Integrable Systems" (Dubna, January, 2007

    A Generalized Q-operator for U_q(\hat(sl_2)) Vertex Models

    Full text link
    In this paper, we construct a Q-operator as a trace of a representation of the universal R-matrix of Uq(sl^2)U_q(\hat{sl}_2) over an infinite-dimensional auxiliary space. This auxiliary space is a four-parameter generalization of the q-oscillator representations used previously. We derive generalized T-Q relations in which 3 of these parameters shift. After a suitable restriction of parameters, we give an explicit expression for the Q-operator of the 6-vertex model and show the connection with Baxter's expression for the central block of his corresponding operator.Comment: 22 pages, Latex2e. This replacement is a revised version that includes a simple explicit expression for the Q matrix for the 6-vertex mode

    Exact results for the one-dimensional many-body problem with contact interaction: Including a tunable impurity

    Get PDF
    The one-dimensional problem of NN particles with contact interaction in the presence of a tunable transmitting and reflecting impurity is investigated along the lines of the coordinate Bethe ansatz. As a result, the system is shown to be exactly solvable by determining the eigenfunctions and the energy spectrum. The latter is given by the solutions of the Bethe ansatz equations which we establish for different boundary conditions in the presence of the impurity. These impurity Bethe equations contain as special cases well-known Bethe equations for systems on the half-line. We briefly study them on their own through the toy-examples of one and two particles. It turns out that the impurity can be tuned to lift degeneracies in the energies and can create bound states when it is sufficiently attractive. The example of an impurity sitting at the center of a box and breaking parity invariance shows that such an impurity can be used to confine asymmetrically a stationary state. This could have interesting applications in condensed matter physics.Comment: 20 pages, 5 figures, version accepted for publication: some typos corrected, references and comments adde

    On the Lagrangian structure of integrable hierarchies

    Get PDF
    We develop the concept of pluri-Lagrangian structures for integrable hierarchies. This is a continuous counterpart of the pluri-Lagrangian (or Lagrangian multiform) theory of integrable lattice systems. We derive the multi-time Euler Lagrange equations in their full generality for hierarchies of two-dimensional systems, and construct a pluri-Lagrangian formulation of the potential Korteweg-de Vries hierarchy.Comment: 29 page

    Spontaneous magnetization of the XXZ Heisenberg spin-1/2 chain

    Full text link
    Determinant representations of form factors are used to represent the spontaneous magnetization of the Heisenberg XXZ chain (Delta >1) on the finite lattice as the ratio of two determinants. In the thermodynamic limit (the lattice of infinite length), the Baxter formula is reproduced in the framework of Algebraic Bethe Ansatz. It is shown that the finite size corrections to the Baxter formula are exponentially small.Comment: 18 pages, Latex2

    Analytic theory of the eight-vertex model

    Get PDF
    We observe that the exactly solved eight-vertex solid-on-solid model contains an hitherto unnoticed arbitrary field parameter, similar to the horizontal field in the six-vertex model. The parameter is required to describe a continuous spectrum of the unrestricted solid-on-solid model, which has an infinite-dimensional space of states even for a finite lattice. The introduction of the continuous field parameter allows us to completely review the theory of functional relations in the eight-vertex/SOS-model from a uniform analytic point of view. We also present a number of analytic and numerical techniques for the analysis of the Bethe Ansatz equations. It turns out that different solutions of these equations can be obtained from each other by analytic continuation. In particular, for small lattices we explicitly demonstrate that the largest and smallest eigenvalues of the transfer matrix of the eight-vertex model are just different branches of the same multivalued function of the field parameter.Comment: 58 pages, 12 figures, minor correction
    corecore