17 research outputs found

    Sub-surface modifications in silicon with ultra-short pulsed lasers above 2 µm

    Get PDF
    Nonlinear optical phenomena in silicon such as self-focusing and multi-photon absorption are strongly dependent on the wavelength, energy, and duration of the exciting pulse, especially for wavelengths >2µm. We investigate the sub-surface modification of silicon using ultra-short pulsed lasers at wavelengths in the range of 1950–2400 nm, at a pulse duration between 2 and 10 ps and pulse energy varying from 1 µJ to 1 mJ. We perform numerical simulations and experiments using fiber-based lasers built in-house that operate in this wavelength range for the surface and sub-surface processing of Si-wafers. The results are compared to the literature data at 1550 nm. Due to a dip in the nonlinear absorption spectrum and a peak in the spectrum of the third-order nonlinearity, the wavelengths between 2000 and 2200 nm prove to be more favorable for creating sub-surface modifications in silicon. This is the case even though those wavelengths do not allow as tight focusing as those at 1550 nm. This is compensated for by an increased self-focusing due to the nonlinear Kerr-effect around 2100 nm at high light intensities, characteristic for ultra-short pulses

    Labour Market and Social Policy in Italy: Challenges and Changes. Bertelsmann Policy Brief #2016/02

    Get PDF
    vEight years after the outbreak of the financial crisis, Italy has still to cope with and overcome a plethora of economic and social challenges. On top of this, it faces an unfavourable demographic structure and severe disparities between its northern and southern regions. Some promising reforms have recently been enacted, specifically targeting poverty and social exclusion. However, much more remains to be done on the way towards greater economic stability and widely shared prosperity

    Sub-surface modifications in silicon with ultra-short pulsed lasers above 2 µm

    Get PDF
    Nonlinear optical phenomena in silicon such as self-focusing and multi-photon absorption are strongly dependent on the wavelength, energy, and duration of the exciting pulse, especially for wavelengths > 2 mu m. We investigate the sub-surface modification of silicon using ultra-short pulsed lasers at wavelengths in the range of 1950-2400 nm, at a pulse duration between 2 and 10 ps and pulse energy varying from 1 mu J to 1 mJ. We perform numerical simulations and experiments using fiber-based lasers built in-house that operate in this wavelength range for the surface and sub-surface processing of Si-wafers. The results are compared to the literature data at 1550 nm. Due to a dip in the nonlinear absorption spectrum and a peak in the spectrum of the third-order nonlinearity, the wavelengths between 2000 and 2200 nm prove to be more favorable for creating sub-surface modifications in silicon. This is the case even though those wavelengths do not allow as tight focusing as those at 1550 nm. This is compensated for by an increased self-focusing due to the nonlinear Kerr-effect around 2100 nm at high light intensities, characteristic for ultra-short pulses. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License
    corecore