343 research outputs found

    Addendum to: Search for anomalous top-gluon couplings at LHC revisited

    Full text link
    In our latest paper "Search for anomalous top-gluon couplings at LHC revisited" in Eur. Phys. J. C65 (2010), 127-135 (arXiv:0910.3049 [hep-ph]), we studied possible effects of nonstandard top-gluon couplings through the chromoelectric and chromomagnetic moments of the top quark using the total cross section of ppbar/pp --> ttbar X at Tevatron/LHC. There we pointed out that LHC data could give a stronger constraint on those two parameters, which would be hard to obtain from Tevatron data alone. We show here the first CMS measurement of this cross section actually makes it possible.Comment: 5 pages, 1 figure, LaTeX2e, Final version (to appear in Eur. Phys. C

    Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson–Gilford Progeria Syndrome

    Get PDF
    Hutchinson–Gilford progeria syndrome (HGPS) is a genetic disorder characterized by premature aging features. Cells from HGPS patients express progerin, a truncated form of Lamin A, which perturbs cellular homeostasis leading to nuclear shape alterations, genome instability, heterochromatin loss, telomere dysfunction and premature entry into cellular senescence. Recently, we reported that telomere dysfunction induces the transcription of telomeric non-coding RNAs (tncRNAs) which control the DNA damage response (DDR) at dysfunctional telomeres. Here we show that progerin-induced telomere dysfunction induces the transcription of tncRNAs. Their functional inhibition by sequence-specific telomeric antisense oligonucleotides (tASOs) prevents full DDR activation and premature cellular senescence in various HGPS cell systems, including HGPS patient fibroblasts. We also show in vivo that tASO treatment significantly enhances skin homeostasis and lifespan in a transgenic HGPS mouse model. In summary, our results demonstrate an important role for telomeric DDR activation in HGPS progeroid detrimental phenotypes in vitro and in vivo

    Dimension-Six Terms in the Standard Model Lagrangian

    Get PDF
    When the Standard Model is considered as an effective low-energy theory, higher dimensional interaction terms appear in the Lagrangian. Dimension-six terms have been enumerated in the classical article by Buchmueller and Wyler [3]. Although redundance of some of those operators has been already noted in the literature, no updated complete list has been published to date. Here we perform their classification once again from the outset. Assuming baryon number conservation, we find 15 + 19 + 25 = 59 independent operators (barring flavour structure and Hermitian conjugations), as compared to 16 + 35 + 29 = 80 in Ref.[3]. The three summed numbers refer to operators containing 0, 2 and 4 fermion fields. If the assumption of baryon number conservation is relaxed, 4 new operators arise in the four-fermion sector.Comment: 16 pages, no figures, v3: Redundant B-violating operator remove

    Predictive significance of the six-minute walk distance for long-term survival in chronic hypercapnic respiratory failure

    Get PDF
    Background: The 6-min walk distance ( 6-MWD) is a global marker of functional capacity and prognosis in chronic obstructive pulmonary disease ( COPD), but less explored in other chronic respiratory diseases. Objective: To study the role of 6-MWD in chronic hypercapnic respiratory failure ( CHRF). Methods: In 424 stable patients with CHRF and non-invasive ventilation ( NIV) comprising COPD ( n = 197), restrictive diseases ( RD; n = 112) and obesity-hypoventilation- syndrome ( OHS; n = 115), the prognostic value of 6-MWD for long- term survival was assessed in relation to that of body mass index (BMI), lung function, respiratory muscle function and laboratory parameters. Results: 6-MWD was reduced in patients with COPD ( median 280 m; quartiles 204/350 m) and RD ( 290 m; 204/362 m) compared to OHS ( 360 m; 275/440 m; p <0.001 each). Overall mortality during 24.9 (13.1/40.5) months was 22.9%. In the 424 patients with CHRF, 6-MWD independently predicted mortality in addition to BMI, leukocytes and forced expiratory volume in 1 s ( p <0.05 each). In COPD, 6-MWD was strongly associated with mortality using the median {[} p <0.001, hazard ratio ( HR) = 3.75, 95% confidence interval (CI): 2.24-6.38] or quartiles as cutoff levels. In contrast, 6-MWD was only significantly associated with impaired survival in RD patients when it was reduced to 204 m or less (1st quartile; p = 0.003, HR = 3.31, 95% CI: 1.73-14.10), while in OHS 6-MWD had not any prognostic value. Conclusions: In patients with CHRF and NIV, 6-MWD was predictive for long- term survival particularly in COPD. In RD only severely reduced 6-MWD predicted mortality, while in OHS 6-MWD was relatively high and had no prognostic value. These results support a disease-specific use of 6-MWD in the routine assessment of patients with CHRF. Copyright (C) 2007 S. Karger AG, Basel

    Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC

    Full text link
    The Cryogenic Dark Matter Search recently announced the observation of two signal events with a 77% confidence level. Although statistically inconclusive, it is nevertheless suggestive. In this work we present a model-independent analysis on the implication of a positive signal in dark matter scattering off nuclei. Assuming the interaction between (scalar, fermion or vector) dark matter and the standard model induced by unknown new physics at the scale Λ\Lambda, we examine various dimension-6 tree-level induced operators and constrain them using the current experimental data, e.g. the WMAP data of the relic abundance, CDMS II direct detection of the spin-independent scattering, and indirect detection data (Fermi LAT cosmic gamma-ray), etc. Finally, the LHC reach is also explored

    Flavor changing single top quark production channels at e^+e^- colliders in the effective Lagrangian description

    Get PDF
    We perform a global analysis of the sensitivity of LEP2 and e^+e^- colliders with a c.m. energy in the range 500 - 2000 GeV to new flavor-changing single top quark production in the effective Lagrangian approach. The processes considered are sensitive to new flavor-changing effective vertices such as Ztc, htc, four-Fermi tcee contact terms as well as a right-handed Wtb coupling. We show that e^+ e^- colliders are most sensitive to the physics responsible for the contact tcee vertices. For example, it is found that the recent data from the 189 GeV LEP2 run can be used to rule out any new flavor physics that can generate these four-Fermi operators up to energy scales of \Lambda > 0.7 - 1.4 TeV, depending on the type of the four-Fermi interaction. We also show that a corresponding limit of \Lambda > 1.3 - 2.5 and \Lambda > 17 - 27 TeV can be reached at the future 200 GeV LEP2 run and a 1000 GeV e^+e^- collider, respectively. We note that these limits are much stronger than the typical limits which can be placed on flavor diagonal four-Fermi couplings. Similar results hold for \mu^+\mu^- colliders and for tu(bar) associated production. Finally we briefly comment on the necessity of measuring all flavor-changing effective vertices as they can be produced by different types of heavy physics.Comment: 34 pages, plain latex, 7 figures embadded in the text using epsfig. Added new references and discussions regarding their relevance to the paper. Added more comments on the comparison between flavor-changing and flavor-diagonal contact terms and on the importance of measuring the Ztc verte

    Effective-Lagrangian approach to precision measurements: the anomalous magnetic moment of the muon

    Full text link
    We investigate the use of effective Lagrangians to describe the effects on high-precision observables of physics beyond the Standard Model. Using the anomalous magnetic moment of the muon as an example, we detail the use of effective vertices in loop calculations. We then provide estimates of the sensitivity of new experiments measuring the muon's g2 g - 2 to the scale of physics underlying the Standard Model.Comment: 22 pages, 1 figure, PHYZZX & EPSF, report #s UCRHEP-T98, UM_TH-92-17, and NSF-ITP-92-122I Revision: The paper will now TeX properly; the content is unchange

    Testing the Higgs boson gluonic couplings at LHC

    Get PDF
    We study Higgs + jet production at hadron colliders in order to look for new physics residual effects possibly described by the dim=6dim=6 operators {\O}_{GG} and {\widetilde\O}_{GG} which induce anomalous HggHgg and HgggHggg couplings. Two ways for constraining these operators at LHC may be ~useful. The first is based on the total Higgs boson production rate induced by gluon-gluon fusion, in which the main cause of limitations are due to theoretical uncertainties leading to sensitivities of dG3.×104|d_G|\simeq 3.\times 10^{-4} and d~G1.4×103|\widetilde{d}_G|\simeq 1.4\times 10^{-3} for the corresponding anomalous couplings, in the mass range 100 GeV \lsim \mh \lsim 2~00 GeV. These results imply sensitivity to new physics scales of 51 and 24 TeV respectively. The second way investigated here concerns the shape of the Higgs transverse momentum; for which the theoretical uncertainties are less severe and the limitations are mainly induced by statistics. A simple analysis, based on the ratio of the number of events at large and low pTp_T at LHC, leads to similar sensitivities, if only the HγγH\to \gamma \gamma decay mode is used. But the sensitivities can now be improved by a factor 2 to 10, depending on the Higgs mass, if the Higgs decay modes to WWWW^*, ZZZZ^*, WWWW, ZZZZ are also used.Comment: 23 pages and 7 figures, version to appear in Phys.ReV.D. e-mail: [email protected]

    Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses

    Get PDF
    Neutrinoless double beta (0νββ0\nu\beta\beta) decay can in general produce electrons of either chirality, in contrast with the minimal Standard Model (SM) extension with only the addition of the Weinberg operator, which predicts two left-handed electrons in the final state. We classify the lepton number violating (LNV) effective operators with two leptons of either chirality but no quarks, ordered according to the magnitude of their contribution to \znbb decay. We point out that, for each of the three chirality assignments, eLeL,eLeRe_Le_L, e_Le_R and eReRe_Re_R, there is only one LNV operator of the corresponding type to lowest order, and these have dimensions 5, 7 and 9, respectively. Neutrino masses are always induced by these extra operators but can be delayed to one or two loops, depending on the number of RH leptons entering in the operator. Then, the comparison of the 0νββ0\nu\beta\beta decay rate and neutrino masses should indicate the effective scenario at work, which confronted with the LHC searches should also eventually decide on the specific model elected by nature. We also list the SM additions generating these operators upon integration of the heavy modes, and discuss simple realistic examples of renormalizable theories for each case.Comment: Accepted for publication. Few misprints corrected and new references adde
    corecore